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ABSTRACT

This paper develops a new way to quantify the effects of aggregate uncertainty that ac-

counts for exogenous and endogenous sources. First, we use Bayesian methods to estimate a

nonlinear New Keynesian model with stochastic volatility and a zero lower bound constraint

on the nominal interest rate. We discipline the model by matching data on uncertainty, in ad-

dition to common macro time series. Second, we use the Euler equation to decompose output

into expected output and the expected variance and skewnessof output. We then filter a time

series for each term. Our method captures the effects of higher-order moments over horizons

beyond1 quarter by recursively decomposing expected output. Over a1-quarter horizon, out-

put uncertainty reduced output less than0.01% every quarter, similar to volatility shocks in our

model. Over horizons that remove the influence of expected output, output uncertainty on av-

erage reduced output0.06% and the peak effect was0.15% during the Great Recession, similar

to structural VAR estimates. Other higher-order moments had much smaller effects on output.
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1 INTRODUCTION

There is widespread agreement that uncertainty decreases economic activity. The debate rests on

whether the effect is quantitatively significant, which is difficult to determine for two reasons. One,

uncertainty is unobserved, so there is disagreement on whatconstitutes a good measure. Until re-

cently, the literature has relied on proxies for uncertainty, such as realized or implied volatility, in-

dexes based on keywords in print or online media, and survey-based forecast dispersion, which are

often weakly correlated with each other and loosely connected with the definition of uncertainty.

Two, uncertainty is endogenous. Not only can uncertainty affect economic activity, as intuition

suggests, what is happening in the economy can affect uncertainty. A few mechanisms emphasized

in the literature include financial frictions and constraints that create an adverse feedback loop be-

tween net worth and asset prices [Brunnermeier and Sannikov(2014)], incomplete information

that endogenously creates pessimism during recessions [Fajgelbaum et al. (2017); Saijo (2017);

Van Nieuwerburgh and Veldkamp (2006)], and a zero lower bound (ZLB) constraint on the nomi-

nal interest rate that restricts a central bank’s ability tostabilize the economy [Plante et al. (2018)].

The literature often uses exogenous volatility shocks to examine the effects of aggregate un-

certainty. This paper develops a new approach that accountsfor both exogenous and endogenous

uncertainty sources. First, we use Bayesian methods to estimate a nonlinear New Keynesian model

with stochastic volatility and an occasionally binding ZLBconstraint. We discipline the model by

matching data on uncertainty, in addition to common macro time series. This step allows us to

decompose the sources of uncertainty and generate a data-driven policy function for any moment.

Second, we use the Euler equation to decompose output into expected output and the expected

variance and skewness of output. We then filter a time series for each term in the decomposition.

A major benefit of our method is that it captures the effects ofhigher-order moments over

horizons beyond1 quarter by recursively decomposing expected output. Over a1-quarter horizon,

output uncertainty reduced output less than0.01% every quarter, similar to volatility shocks in our

model. Over horizons that remove the influence of expected output, output uncertainty on average

reduced output0.06% and the peak effect was0.15% during the Great Recession, similar to struc-

tural VAR estimates. Roughly one-third of the increase during the Great Recession was due to the

ZLB. When we extend our model without capital so households can invest, the average effect of

output uncertainty increases to−0.08% and the peak effect rises to−0.22%, but the differences

are not statistically significant. Other higher-order moments had much smaller effects on output.

We conduct two exercises to uncover the drivers of our results. One, we use counterfactual

simulations to decompose uncertainty into its endogenous and exogenous sources. Endogenous

uncertainty—uncertainty that naturally arises due to firstmoment shocks—typically accounted

for 95% of total uncertainty. However, nearly all of the changes in uncertainty were driven by the
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volatility shocks. One exception is when the Fed was constrained. In 2009Q1,8.5% of the increase

in uncertainty was due to endogenous uncertainty while38% was due to the endogenous amplifica-

tion of volatility shocks. Two, we determine the importanceof each parameter in our model for the

results of our Euler equation decomposition using posterior predictive analysis. While price adjust-

ment costs play an important role as others have emphasized,risk aversion and the monetary re-

sponse to inflation had the largest impact on the effects of uncertainty among the deep parameters.

We conclude our analysis by calculating the welfare effectsof uncertainty following the cost of

business cycles literature. We find the welfare cost of volatility never exceeded0.04% of consump-

tion. We also compare impulse responses to a financial uncertainty shock in our nonlinear model

to the same shock in a structural VAR using a recursive identification scheme, since that is the most

common way to identify the effects of uncertainty. Using data simulated from the nonlinear model,

the VAR generates quantitatively similar responses to our structural model. There is almost no re-

sponse of output in data without the ZLB and a larger effect indata with a lengthy ZLB event. Sim-

ilar differences in the responses occur in U.S. data with andwithout the ZLB period in the sample.

Although we use a familiar model as a starting point for understanding the effects of higher-

order moments, our method is adaptable to a broad class of models. For example, it can be applied

to models with limited information, irreversible investment, borrowing constraints, search fric-

tions, heterogeneous agents, or other important sources oftime-varying endogenous uncertainty.

While those features may make the model too costly to estimate, approximate solutions are attain-

able either locally with perturbation methods or globally with projection methods. With a solution

in hand, it is possible to calculate the expected variance orskewness surrounding any endogenous

variable and link it to an empirical measure while filtering the data. Given a particular calibration,

the filter can then generate time series for the terms in any Euler equation. Therefore, our method

provides a way to compare the effects of uncertainty or otherhigh-order moments across models.

The paper proceeds as follows.Section 2places our work within the vast literature on uncer-

tainty. Section 3describes our model as well as the exogenous and endogenous sources of uncer-

tainty. Section 4outlines our solution and estimation procedures.Section 5provides our estimation

results, including the parameter estimates and the effectsof uncertainty and skewness on output.

Section 6shows how our results change when we introduce capital.Section 7draws comparisons

between the impulse responses in our nonlinear model and a structural VAR.Section 8concludes.

2 RELATED L ITERATURE

Research that examines the effects of aggregate uncertainty has considered several different shocks.

In a small open-economy real business cycle model, Fernández-Villaverde et al. (2011) examine

volatility shocks to a country-specific interest rate spread. They find a1 standard deviation shock

lowers output0.15%-0.2% in Argentina and Ecuador and0.01%-0.02% in Brazil and Venezuela.
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Most papers develop closed-economy New Keynesian models. Mumtaz and Zanetti (2013)

focus on monetary policy volatility shocks in a model without capital. They find doubling the

volatility reduces output growth by only0.03%. Born and Pfeifer (2014) introduce variable cap-

ital utilization and investment adjustment costs. They show a simultaneous2 standard deviation

increase in uncertainty about government spending, monetary policy, and capital and labor taxes re-

duces output by only0.065%. In contrast, Fernández-Villaverde et al. (2015) find a volatility shock

to only capital taxes reduces output by0.1% and the effects are much larger when the ZLB binds.

In a textbook model with recursive preferences, Basu and Bundick (2017) find a1 standard

deviation preference volatility shock—a proxy for demand uncertainty—reduces output by0.2%.

de Groot et al. (2018) show the way the shock enters their preferences creates an asymptote in the

parameter space that amplifies the output response. Withoutthe asymptote, preference volatility

shocks have a small effect. Leduc and Liu (2016) include search frictions and habit formation

and find a1 standard deviation increase in technology volatility—a proxy for supply uncertainty—

increases unemployment by2.6%. In our paper, both supply and demand uncertainty varies exoge-

nously due to stochastic volatility shocks to the risk premium and the growth rate of technology.

The volatility shocks in our model also have a small impact, but the effect of output uncertainty

from our Euler equation decomposition is an order of magnitude larger. That result emphasizes

the importance of accounting for the expected effects of uncertainty over horizons beyond1 quar-

ter. Another major benefit of our approach is that it directlylinks the measures of uncertainty in

our model—second moments—to equivalent measures in the data with likelihood based methods,

whereas previous work relied on first moments such as real activity, interest rates, and fiscal vari-

ables. We also quantify the effects of other higher-order moments, such as the skewness of output

and the covariance between output and inflation, which have received less attention in the literature.

As an alternative to exogenous volatility shocks, several papers propose models that endoge-

nously generate uncertainty. There are several mechanisms. One segment emphasizes the role of a

financial sector under complete information, where the severity and duration of financial crises are

stochastic. Most papers focus on crises that result from financial frictions and collateral constraints

[Brunnermeier and Sannikov (2014); He and Krishnamurthy (2014); Mendoza (2010)], while a few

papers incorporate the role of firm default [Arellano et al. (2016); Gourio (2014); Navarro (2014)].

Another segment examines the implications of incomplete information. Some of the papers fea-

ture learning with aggregate shocks [Fajgelbaum et al. (2017); Saijo (2017); Van Nieuwerburgh and

Veldkamp (2006)], while others focus on firm-specific shocks[Ilut and Saijo (2016); Straub and

Ulbricht (2015)]. In these models, an adverse shock under asymmetric learning lowers economic

activity and makes it harder for households to learn about the economy, which amplifies the effects

of first moment shocks. In our model, the effects of first and second moment shocks are amplified

by the ZLB [Basu and Bundick (2017); Fernández-Villaverdeet al. (2015); Nakata (2017); Plante
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et al. (2018)]. We bridge the gap between the exogenous and endogenous uncertainty literatures by

providing a flexible methodology that is easily applied to models with both types of uncertainty.

Our paper is also related to the cost of business cycles literature. Lucas (1987) examines the

welfare cost of “instability” by calculating the fraction of consumption goods a household would

give up each period to eliminate volatility. With constant relative risk aversion preferences, Lucas

finds the welfare cost of the consumption volatility in post-World War II data ranges from0.008%

(log utility) to 0.17% (risk aversion,γ = 20). The conclusion is that the cost of instability is in-

significant.1 We build on this literature by calculating welfare at each point in our sample using an

estimated model that matches both macro and uncertainty data. We find the welfare costs of first

moment shocks are well within the range Lucas reported. Second moments shocks have an even

smaller welfare effect, consistent with the values reported in Xu (2017). We view this important

exercise as complementary to our Euler equation decomposition. However, a benefit of our de-

composition is that it shows which higher-order moments aremost important at each point in time.

3 NEW KEYNESIAN MODEL AND UNCERTAINTY MEASURES

We use a New Keynesian model similar to An and Schorfheide (2007), except it includes a ZLB

constraint and stochastic volatility on technology growthand the risk premium on a nominal bond.

3.1 FIRMS The production sector consists of a continuum of monopolistically competitive in-

termediate goods firms and a final goods firm. Intermediate firmi ∈ [0, 1] produces a differentiated

good,yft (i), according toyft (i) = ztnt(i), wheren(i) is the labor hired by firmi andzt = gtzt−1 is

technology, which is common across firms. Deviations from the balanced growth rate,ḡ, follow

gt = (1− ρg)ḡ + ρggt−1 + σg,tεg,t, 0 ≤ ρg < 1, εg ∼ N(0, 1), (1)

σg,t = σ̄g(σg,t−1/σ̄g)
ρσg exp(σσg

εσg,t), 0 ≤ ρσg
< 1, εσg

∼ N(0, 1), (2)

where the standard deviation of the technology shock,σg, follows an independent log-normal pro-

cess (σg andεg are uncorrelated) to add a source of time-varying supply uncertainty to the model.

The final goods firm purchasesyft (i) units from each intermediate firm to produce the final

good,yft ≡ [
∫ 1

0
yft (i)

(θ−1)/θdi]θ/(θ−1), whereθ > 1 is the elasticity of substitution. It then maxi-

mizes dividends to determine its demand function for intermediate goodi, yft (i) = (pt(i)/pt)
−θyft ,

wherept = [
∫ 1

0
pt(i)

1−θdi]1/(1−θ) is the price level. Following Rotemberg (1982), each interme-

diate firm pays a price adjustment cost,adjft (i) ≡ ϕf(pt(i)/(π̄pt−1(i)) − 1)2yft /2, whereϕf > 0

scales the cost and̄π is the gross inflation rate along the balanced growth path. Therefore, firm

i choosesnt(i) andpt(i) to maximize the expected discounted present value of futuredividends,

1Several papers examine these estimates in different settings [Lester et al. (2014); Otrok (2001); Tallarini (2000)].
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Et

∑

∞

k=t qt,kdk(i), subject to its production function and the demand for its product, whereqt,t ≡ 1,

qt,t+1 ≡ β(c̃t/c̃t+1)
γ is the pricing kernel between periodst and t + 1, qt,k ≡

∏k>t
j=t+1 qj−1,j,

dt(i) = pt(i)y
f
t (i)/pt −wtnt(i)− adjft (i), and a tilde denotes a detrended variable (i.e.,x̃ = x/z).

In symmetric equilibrium, all firms make identical decisions, so the optimality conditions imply

ỹft = nt, (3)

mct = w̃t, (4)

ϕf(π
gap
t − 1)πgap

t = 1− θ + θmct + βϕfEt[(c̃t/c̃t+1)
γ(πgap

t+1 − 1)πgap
t+1(ỹ

f
t+1/ỹ

f
t )], (5)

whereπgap
t ≡ πt/π̄ is the inflation gap. In the special case where prices are perfectly flexible (i.e.,

ϕf = 0), w̃t = (θ−1)/θ, which equals the inverse of the gross markup of price over marginal cost.

3.2 HOUSEHOLDS The representative household chooses{ct, nt, bt}
∞

t=0 to maximize expected

lifetime utility, E0

∑

∞

t=0 β
t[((ct/zt)

1−γ−1)/(1−γ)−χn1+η
t /(1+η)], whereγ is the coefficient of

relative risk aversion,χ > 0 is a preference parameter that determines the steady state labor supply,

1/η is the Frisch elasticity of labor supply,c is consumption,n is labor hours,b is the real value

of a privately-issued1-period nominal bond that is in zero net supply, andE0 is the mathematical

expectation operator conditional on information in period0. Following An and Schorfheide (2007),

households receive utility from consumption relative to the level of technology, which is a proxy for

the habit stock. That assumption allows us to use additivelyseparable preferences and parameterize

the degree of risk aversion while maintaining a balanced growth path. The household’s choices are

constrained byct + bt/(itst) = wtnt + bt−1/πt + dt, whereπ is the gross inflation rate,w is the

real wage rate,i is the gross nominal interest rate set by the central bank, and d is a real dividend

received from owning the intermediate goods firms. Following Smets and Wouters (2007) and

Gust et al. (2017),s is a shock to the risk premium on the nominal bond and it evolves according to

st = (1− ρs) + ρsst−1 + σs,tεs,t, 0 ≤ ρs < 1, εs ∼ N(0, 1), (6)

σs,t = σ̄s(σs,t−1/σ̄s)
ρσs exp(σσs

εσs,t), 0 ≤ ρσs
< 1, εσs

∼ N(0, 1), (7)

where the standard deviation of the risk premium shock,σs, follows an independent log-normal

process (σs andεs are uncorrelated) to introduce time-varying demand uncertainty into the model.

The first order conditions to the household’s constrained optimization problem imply

w̃t = χnη
t c̃

γ
t , (8)

1 = βEt[(c̃t/c̃t+1)
γ(stit/(π̄π

gap
t+1gt+1))]. (9)

Equation (9) is the Euler equation we will use to show the effects of various higher-order moments.
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3.3 MONETARY POLICY The central bank sets the gross nominal interest rate according to

it = max{1, int }, (10)

int = (int−1)
ρi (̄ı(πgap

t )φπ(gtỹt/(ḡỹt−1))
φy)1−ρi exp(σiεi,t), 0 ≤ ρi < 1, εi ∼ N(0, 1), (11)

wherey is output (the amount of final goods,yf , minus the resources lost due to price adjustment

costs,adjf ), in is the gross notional interest rate,ı̄ andπ̄ are the steady-state or target values of the

inflation and nominal interest rates, andφπ andφy determine the central bank’s responses to devia-

tions of inflation from the target rate and deviations of output growth from the balanced growth rate.

3.4 COMPETITIVE EQUILIBRIUM The aggregate resource constraint is given by

c̃t = ỹt, (12)

ỹt = (1− ϕf (π
gap
t − 1)2/2)ỹft . (13)

To make the model stationary, we redefined all of the variables that grow along the balanced growth

path in terms of technology (i.e.,̃xt ≡ xt/zt). A competitive equilibrium consists of infinite se-

quences of quantities,{c̃t, ỹt, ỹ
f
t , nt}

∞

t=0, prices,{w̃t, mct, it, i
n
t , π

gap
t }∞t=0, and exogenous variables,

{st, gt, σg,t, σs,t}
∞

t=0, that satisfy the detrended equilibrium system, (1)-(13), given the initial con-

ditions,{c−1, i
n
−1, g0, s0, εi,0, σg,0, σs,0}, and the sequences of shocks,{εg,t, εs,t, εi,t, εσg,t, εσs,t}

∞

t=1.

3.5 MEASURES OFUNCERTAINTY The stochastic volatility processes, (2) and (7), create ex-

ogenous sources of time-varying supply and demand uncertainty. Uncertainty is measured by the

expected standard deviation of future technology growth and the future risk premium, which equal

Ug,t ≡
√

Et[(gt+1 − Etgt+1)2] =
√

Et[σ
2
g,t+1],

Us,t ≡
√

Et[(st+1 − Etst+1)2] =
√

Et[σ2
s,t+1].

We classify these types of uncertainty as exogenous becausethey fluctuate due to temporary

changes in the standard deviation of each shock. For example, if the volatility of technology

growth temporarily increases, then supply uncertainty also increases and lowers economic activity.

Uncertainty also arises endogenously in any nonlinear macro model. Following Plante et al.

(2018), the endogenous uncertainty surrounding trended output growth,ygt ≡ gtỹt/ỹt−1, is given by

Uyg ,t ≡
√

Et[(y
g
t+1 −Et[y

g
t+1])

2], (14)

which is the same way we measure exogenous uncertainty, except it is calculated with an endoge-
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nous variable. Both measures of uncertainty remove the predictable component of the forecasted

variable instead of only a constant trend, so they distinguish between uncertainty and conditional

volatility. However, the endogenous uncertainty measure not only fluctuates due to exogenous

volatility shocks, but also due to events that happen in the economy. For example, when the no-

tional interest rate is negative, the economy is more sensitive to first moment shocks that adversely

affect the economy, which increases the endogenous uncertainty about output growth. The ZLB

constraint also creates uncertainty by amplifying the effect of the two exogenous volatility shocks.

4 NUMERICAL METHODS AND DECOMPOSITION

4.1 SOLUTION METHOD We solve the nonlinear model with the policy function iteration algo-

rithm described in Richter et al. (2014), which is based on the theoretical work on monotone op-

erators in Coleman (1991). The presence of stochastic volatility complicates the solution method

because the realizations ofg ands depend on the realizations of the stochastic volatility processes.

We discretize the state space and then approximate the stochastic volatility processes, (2) and

(7), and first moment shocks,εg, εs, andεi, using theN-state Markov chain described in Rouwen-

horst (1995). The Rouwenhorst method is attractive becauseit only requires us to interpolate

along the dimensions of the endogenous state variables, which makes the solution more accurate

and faster than quadrature methods. For each combination ofthe first and second moment shocks,

we calculate the future realizations of technology and the risk premium according to (1) and (6).

To obtain initial conjectures for the nonlinear policy functions, we solve the log-linear analogue of

our nonlinear model with Sims’s (2002) gensys algorithm. Then we minimize the Euler equation

errors on every node in the discretized state space and compute the maximum distance between the

updated policy functions and the initial conjectures. Finally, we replace the initial conjectures with

the updated policy functions and iterate until the maximum distance is below the tolerance level.

The algorithm produces policy functions for consumption and inflation. To estimate the model,

we also create a policy function for output growth uncertainty, (14), by interpolating the implied

policy function for output and integrating. SeeAppendix Cfor a description of the solution method.

4.2 ESTIMATION PROCEDURE We estimate the nonlinear model with quarterly data on per

capita real GDP,RGDP/CNP , the GDP implicit price deflator,DEF , the federal funds rate,

FFR, the macro uncertainty series in Jurado et al. (2015),UM , and the financial uncertainty series

in Ludvigson et al. (2017),UF , from 1986Q1 to 2016Q2. The vector of observables is given by

x̂
data
t ≡ [∆ log(RGDPt/CNPt), ∆ log(DEFt), log(1 + FFRt/100)/4, z(UMt), z(UFt)],

where∆ denotes a difference andz(·) is a standardized variable.Appendix Aprovides our sources.
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1986 1990 1994 1998 2002 2006 2010 2014
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Macro Uncertainty (UM )

Financial Uncertainty (UF )

Stock Market Volatility (V XO)

Forecast Dispersion (SPF )

Figure 1: Measures of uncertainty in the data.

Figure 1plots the standardized 1-quarter aheadUM andUF series, which inform the param-

eters in our model and ensure it produces the same fluctuations in uncertainty as the data. The

series are based on a factor augmented VAR that accounts for132 macroeconomic and147 fi-

nancial variables. Repeated simulations of the FAVAR are used to obtain estimates of uncertainty

for each macro (financial) variable and then averaged to obtain theUM (UF ) time series. The

benefit of these series is that they are calculated the same way as (14), so they distinguish between

uncertainty and conditional volatility and reflect the uncertainty surrounding a rich set of variables.

For comparison, we also plot two other popular measures of uncertainty: the Chicago Board

Options Exchange S&P 100 Volatility Index (V XO) and the dispersion in forecasts of real GDP

growth1-quarter ahead from the Survey of Professional Forecasters(SPF ). The different uncer-

tainty measures generally move together, but they also showsignificant independent variation. For

example, sharp increases in theV XO, SPF , andUF series occur with some regularity, but they

are far less frequent in theUM series. After the start of the Great Recession, the correlations be-

tween the uncertainty measures all exceeded0.7, but they are near0.4 prior to that date. The one

exception is the correlation betweenUF and theV XO, which was above0.8 in both subperiods.

We calibrate four parameters (table 1). The subjective discount factor,β, is set to0.9987. The

preference parameter,χ, is set so the labor supply along the balanced growth path equals1/3 of the

available time. The elasticity of substitution between goods,θ, is set to6, which matches the esti-

mate in Christiano et al. (2005) and corresponds to a20% average markup of price over marginal

cost. The Frisch labor supply elasticity,1/η, is set to3, to match the estimate in Peterman (2016).

We use Bayesian methods to estimate the remaining parameters in our model. For each draw

from the parameter distribution, we solve the nonlinear model and approximate the likelihood

using a particle filter. We determine whether to accept a drawwith a random walk Metropolis-
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Balanced Growth Discount Factorβ̄ 0.9987 Real GDP Growth Rate ME SD σme,yg 0.00268
Frisch Elasticity of Labor Supply 1/η 3 Inflation Rate ME SD σme,π 0.00109
Elasticity of Substitution θ 6 Federal Funds Rate ME SD σme,i 0.00094
Balanced Growth Labor Supply n̄ 0.33 Macro Uncertainty ME SD σme,um 0.44721
Number of Particles Np 40,000 Financial Uncertainty ME SD σme,uf 0.44721

Table 1: Calibrated parameters for the nonlinear model and particle filter.

Hastings algorithm. The filter uses40,000 particles and systematic resampling with replacement

following Kitagawa (1996). To help the model better match outliers during the Great Recession,

we adapt the particle filter described in Fernández-Villaverde and Rubio-Ramı́rez (2007) to include

the information contained in the current observation according to Algorithm 12 in Herbst and

Schorfheide (2016). SeeAppendix Dfor a more complete description of our estimation procedure.

A major difference from other filters is that the particle filter requires measurement error (ME)

to avoid degeneracy—a situation when all but a few particle weights are near zero, so the equation

linking the observables to equivalent variables in the model is given byx̂data
t = x̂

model
t + ξt, where

x̂
model
t = [log(ygt ), log(πt), log(it), z(Uyg ,t), z(Us,t)],

ξ ∼ N(0,Σ) is a vector of MEs andΣ = diag([σ2
me,yg , σ

2
me,π, σ

2
me,i, σ

2
me,um, σ

2
me,uf ]). Following

Herbst and Schorfheide (2016), we set the ME variances to20% of their variance in the data, except

the ME variance for the policy rate is set to2% because the federal funds rate is less noisy and it af-

fects the level of uncertainty predicted by the model near the ZLB. We link output uncertainty to the

macro uncertainty index and risk premium uncertainty to thefinancial uncertainty index because

Ludvigson et al. (2017) find financial uncertainty is an exogenous impulse that causes recessions,

whereas macro uncertainty endogenously responds to other shocks that affect the business cycle.

In our model, output uncertainty is endogenous, whereas risk premium uncertainty is exogenous.

The entire algorithm is programmed in Fortran using Open MPIand executed on a cluster with

512 cores. We parallelize the nonlinear solution by distributing the nodes in the state space across

the available cores. To increase the accuracy of the filter, we calculate the model likelihood on each

core and then evaluate whether to accept a candidate draw based on the median likelihood. This im-

portant step reduces the variance of the model likelihood across multiple runs of the particle filter.

Our estimation procedure has three stages. First, we conduct a mode search to create an initial

variance-covariance matrix for the parameters. The covariance matrix is based on the parameters

corresponding to the90th percentile of the likelihoods from5,000 draws. Second, we perform an

initial run of the Metropolis Hastings algorithm with25,000 draws from the posterior distribution.

We burn off the first5,000 draws and use the remaining draws to update the variance-covariance

matrix from the mode search. Third, we conduct a final run of the Metropolis Hastings algorithm.
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We obtain100,000 draws from the posterior distribution and then thin by100 to limit the effects of

serial correction in the parameter draws, so our posterior distribution has a sample of1,000 draws.

4.3 EULER EQUATION DECOMPOSITION Our goal is to determine how changes in uncertainty

affect output, taking into account all first and second moment shocks as well as endogenous dy-

namics. One way to quantify the effect of uncertainty in a given period is by decomposing output

with the Euler equation, (9). A third-order approximation around the balanced growth path implies

ŷt ≈ Etŷt+1 −
1
γ
r̂t − covt(π̂t+1, ŷt+1)− covt(ĝt+1, ŷt+1)−

1
γ
covt(π̂t+1, ĝt+1) (15)

− 1
2γ
(vart ĝt+1 + vart π̂t+1 + γ2 vart ŷt+1) +

1
6γ
(skewt ĝt+1 + skewt π̂t+1 + γ3 skewt ŷt+1),

wherevart, skewt, andcovt denote the variance, third moment, and covariance of a variable condi-

tional on information at timet, r̂t ≡ ı̂t + ŝt −Etπ̂t+1 −Etĝt+1 is theex-antereal interest rate, and

a hat denotes log deviation from the balanced growth path.2 Appendix Bprovides the derivation.

We omit higher-order covariance terms as well as fourth-order and higher terms because they

had almost no effect on output in our sample. The variance, skewness, and covariance terms quan-

tify the effect of the uncertainty, upside and downside risk, and the pairwise linear relationships be-

tween output, inflation, and technology growth. Higher riskaversion makes households less willing

to intertemporally substitute consumption goods, which makes them less sensitive to the real inter-

est rate and more sensitive to the variance and skewness of output. Most of our analysis will focus

on the variance of output. That term will have the same effecton output regardless of which Euler

equation is used for the decomposition because the pricing kernel always enters in the same way.

The decomposition shows how the different types of uncertainty and skewness affect current

output over a1-quarter horizon. If we recursively substitute for expected future output, we obtain

ŷt ≈ Etŷt+q −
1
γ
Et

∑q
j=1 r̂t+j−1

−
∑q

j=1(covt(π̂t+j , ŷt+j) + covt(ĝt+j, ŷt+j) +
1
γ
covt(π̂t+j , ĝt+j))

− 1
2γ

∑q
j=1(vart ĝt+j + vart π̂t+j + γ2 vart ŷt+j)

+ 1
6γ

∑q
j=1(skewt ĝt+j + skewt π̂t+j + γ3 skewt ŷt+j),

(16)

whereq ≥ 1 is the forecast horizon. The sum of each variance term overq quarters captures the

effect of a given type of uncertainty, conditional on expected output in quarterq. Whenq becomes

2Decompositions of equilibrium conditions have been used tostudy other topics. Basu and Bundick (2015) derive
a similar decomposition to ours in an endowment economy model to provide intuition for how the Fed can offset the
effects of uncertainty at and away from the ZLB, but they do not quantify the terms. Parker and Preston (2005) use the
Euler equation to decompose consumption growth into a forecast error, the real interest rate, a measure of preferences,
and a precautionary saving channel. Chung and Leeper (2007), Hall and Sargent (2011), Berndt et al. (2012), and
Mason and Jayadev (2014) all use the government budget constraint to determine the key drivers of government debt.
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sufficiently large, the conditional expectation drops out of the decomposition, so we are able to de-

termine the unconditional effects of each higher-order moment. Expected output can hide the effect

of higher-order moments in future quarters. By decomposingexpected future output, we can show

how the uncertainty, skewness, and covariance terms affectoutput over horizons beyond1 quarter.3

Given a draw from the posterior distribution, we quantify the effect of each term on output in

three steps. First, we create policy functions for the10q+1 variables in the decomposition by inte-

grating across10,000 q-quarter simulations initialized at each node in the state space. Although the

variables are represented in deviations from the balanced growth path, the policy functions inherit

the nonlinearities from the solution. Second, we create time series for the variables in the de-

composition at each horizon by interpolating the policy functions at the median filtered states and

shocks in each time period. Third, we weight each variable byits coefficient in the decomposition.

5 ESTIMATED EFFECTS OFUNCERTAINTY

We first show the posterior parameter distributions, impulse responses, and sources of output un-

certainty. Then we show the results of our Euler equation decomposition and analyze which pa-

rameters are most important. The section concludes by showing the welfare cost of business cycles.

5.1 PRIOR AND POSTERIORDISTRIBUTIONS The first four columns oftable 2display the es-

timated parameters and information about the priors. The prior for the coefficient of relative risk

aversion is taken from An and Schorfheide (2007). The priorsfor the steady state growth rate and

the target inflation rate are set to the average per capita GDPgrowth rate and the average inflation

rate over our sample period. The priors for the monetary policy parameters, which follow Guerrón-

Quintana and Nason (2013), are chosen so the distributions cover the values in Taylor (1993) as

well as stronger responses that could explain data during the ZLB period. The priors for the per-

sistence parameters are diffuse, but all of the means, except for the growth rate, are set to0.6 since

a modest degree of persistence is needed to explain the data.The priors for the standard deviations

are also diffuse but less diffuse than in An and Schorfheide (2007) and Smets and Wouters (2007),

since our nonlinear model generates more volatility than analogous unconstrained linear models.

The last four columns display the posterior means, standarddeviations, and90% credible sets

for the estimated parameters. Low frequency movements in the macro and financial uncertainty

time series coupled with sharp increases in both series during the Great Recession generate highly

persistent stochastic volatility processes with large shock standard deviations. For example, a two

standard deviation supply uncertainty shock causes a25.1% increase in the volatility of technology

growth with a half-life of about15.9 quarters. The monetary policy parameters imply a high degree

3After iterating, we obtainEt[covt+j(xt+j+1, yt+j+1)] = covt(xt+j , yt+j)− covt(Et+j [xt+j+1], Et+j [yt+j+1])
by the law of total covariance. In our derivation, we ignore the second term because its effects are quantitatively small.
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Prior Posterior

Parameter Dist. Mean SD Mean SD 5% 95%

Risk Aversion (γ) Gamm 2.0000 0.5000 3.00551 0.44806 2.35252 3.81243
Price Adjustment Cost (ϕf ) Norm 100.0000 20.0000 141.00914 19.95554 110.36190 175.77686
Inflation Response (φπ) Norm 2.0000 0.2500 2.54332 0.19854 2.21212 2.85598
Output Response (φy) Norm 0.5000 0.2000 1.04678 0.15152 0.79593 1.29649
Average Growth (̄g) Norm 1.0040 0.0010 1.00439 0.00058 1.00337 1.00534
Average Inflation (̄π) Norm 1.0055 0.0010 1.00649 0.00041 1.00579 1.00718
Int. Rate Persistence (ρi) Beta 0.6000 0.2000 0.84086 0.01902 0.80740 0.87024
Growth Persistence (ρg) Beta 0.4000 0.2000 0.51433 0.12352 0.29503 0.70706
Risk Persistence (ρs) Beta 0.6000 0.2000 0.91050 0.01084 0.89163 0.92723
Growth SV Persistence (ρσg

) Beta 0.6000 0.2000 0.95721 0.01890 0.92614 0.98109
Risk SV Persistence (ρσs

) Beta 0.6000 0.2000 0.93308 0.01617 0.90404 0.95725
Int. Rate Shock SD (σi) IGam 0.0025 0.0025 0.00127 0.00017 0.00102 0.00157
Growth Shock SD (̄σg) IGam 0.0075 0.0075 0.00371 0.00054 0.00288 0.00463
Risk Shock SD (̄σs) IGam 0.0025 0.0025 0.00139 0.00022 0.00107 0.00177
Growth SV Shock SD (σσg

) IGam 0.1000 0.0250 0.11216 0.02350 0.07647 0.15372
Risk SV Shock SD (σσs

) IGam 0.1000 0.0250 0.11855 0.02218 0.08428 0.15666

Table 2: Prior and posterior distributions of the estimatedparameters. The last two columns show the5th and95th per-
centiles of each marginal posterior distribution. The model is estimated with quarterly data from 1986Q1 to 2016Q2.

of interest rate smoothing and strong responses to real GDP growth and inflation, which are neces-

sary for the model to explain the long ZLB period. The mean estimates of the annualized technol-

ogy growth and inflation rates are1.77% and2.62%, which are slightly higher than the values in the

data since they are unconditional and must compensate for the expectation of the ZLB period. The

mean coefficient of relative risk aversion is consistent with An and Schorfheide (2007). The price

adjustment cost parameter implies a slope of the Phillips curve of about0.035, which is in line with

other estimates in the literature. Overall, the priors and posterior means are consistent with Gust

et al. (2017), who estimate a similar model with an occasionally binding ZLB constraint but with-

out stochastic volatility.Appendix Gprovides additional estimation results, including the kernel

densities of the parameters, median filtered observables and shocks, and unconditional moments.

5.2 IMPULSE RESPONSES We begin our analysis by showing impulse responses to first and

second moment shocks to illustrate the underlying dynamicsin the model. Figure 2plots the

responses to a2 standard deviation positive risk premium, risk premium volatility, growth, and

growth volatility shock. The parameters are set to their posterior means and the simulations are

initialized at two different states. Our benchmark simulation is initialized at the stochastic steady

state and reflective of any state of the economy where there islittle expectation of hitting the ZLB.

We compare the baseline impulse responses to the responses when the notional rate is negative

by initializing the simulation at the filtered state vector corresponding to 2009Q2. The effect of

mean reversion is removed from the responses by plotting thepercentage point difference (percent

12



RICHTER & T HROCKMORTON: A NEW WAY TO QUANTIFY THE EFFECT OFUNCERTAINTY

0 4 8 12

-0.6

-0.4

-0.2

0   

0.2 

O
u
tp
u
t
G
ro
w
th

Risk Premium (εs)

0 4 8 12

-0.06

-0.04

-0.02

0    

0.02 

Risk Prem. Vol. (εσs)

0 4 8 12
0  

0.2

0.4

0.6

0.8
Growth (εg)

0 4 8 12
-0.008
-0.006
-0.004
-0.002

0     
0.002 
0.004 

Growth Vol. (εσg)

0 4 8 12
-0.3

-0.2

-0.1

0   

In
fl
a
ti
o
n
R
a
te

0 4 8 12

-0.04

-0.02

0    

0 4 8 12
-0.08

-0.06

-0.04

-0.02

0    

0 4 8 12
-0.004

-0.002

0     

0 4 8 12

-0.2

-0.1

0   

N
o
m
in
a
l
R
a
te

0 4 8 12

-0.03

-0.02

-0.01

0    

0 4 8 12
0   

0.05

0.1 

0 4 8 12
-0.003

-0.002

-0.001

0     

0 4 8 12
0

2

4

6

U
n
ce
rt
a
in
ty

0 4 8 12
0 

5 

10

0 4 8 12

-2

-1

0 

0 4 8 12
0

5

10

15

Steady State (in0 = 1.2%) 2009Q2 (in0 = −0.4%)

Figure 2: Impulse responses to a2 standard deviation positive shock at and away from the ZLB. The steady-state
simulation (solid line) is initialized at the stochastic steady state. The other simulation (dashed line) is initialized at
the filtered state corresponding to 2009Q2 so the ZLB binds. The vertical axes are in percentage point deviations from
the baseline simulation, except uncertainty is a percent change. The horizontal axes denote the time period in quarters.

change for output uncertainty) from a counterfactual simulation without a shock in the first quarter.

The risk premium and growth volatilities are initialized attheir stochastic steady states in both

simulations, so the level shocks are not amplified by exogenous changes in volatility over time and

the impact effects of the volatility shocks are not distorted by the log-normal volatility processes.

A higher risk premium (first column) in either initial state causes households to postpone con-

sumption, which lowers output growth and inflation on impact. When the Fed is not constrained

by the ZLB, it responds to the shock by reducing its policy rate. The impact on output uncertainty

is small since the Fed is able to stabilize the economy. In 2009Q2, the higher risk premium leads to
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an expected ZLB duration of2 quarters on impact. The Fed cannot respond by lowering its policy

rate, which causes a larger decline in output growth. The result is a larger increase in output uncer-

tainty since households expect a wider range of future realization of output growth. In other words,

the model endogenously generates uncertainty when the ZLB binds due to a risk premium shock.

Similar to the level shock, a positive shock to the volatility of the risk premium (second column)

lowers output growth and inflation. In steady state, the Fed adjusts its policy rate to stabilize the

economy, so the effect of the volatility shock is small even though output uncertainty rises far

more than it does in response to the level shock. When the ZLB binds, however, the increase in

uncertainty nearly doubles, which magnifies the effect on output growth and inflation. Hence, the

model also endogenously creates uncertainty by amplifyingthe effects of second moment shocks.

Level and volatility shocks to technology growth have qualitatively and quantitatively different

effects than risk premium shocks. A positive shock to technology growth (third column) increases

output growth and decreases inflation like a typical supply shock, so the Fed faces a tradeoff

between stabilizing inflation and output growth unlike witha risk premium shock. In steady state,

the policy rate immediately increases since the response tothe output gap dominates the response

to the inflation gap. The ZLB initially binds in 2009Q2, but the increase in the notional rate causes

a quick exit from the ZLB after1 quarter. The delayed increase in the policy rate causes a slightly

larger boost in output growth and a smaller decline in inflation. In contrast with the risk premium

shock, a positive technology growth shock causes output uncertainty to decline because it reduces

the probability that the ZLB binds next period. However, theresponses are smaller in magnitude.

Growth volatility shocks cause bigger changes in uncertainty than level shocks. Similar to a risk

premium volatility shock, a positive growth volatility shock (fourth column) reduces output growth

and inflation, which leads to a lower nominal interest rate. However, the responses differ in a few

ways. One, growth volatility directly affects output volatility. Therefore, uncertainty increases

more than it does in response to a risk premium volatility shock. Two, the response of output uncer-

tainty is similar in both initial states. Three, the increase in output uncertainty away from the ZLB

is much larger than the increase from a risk premium volatility shock. Therefore, growth volatility

shocks play a larger role in explaining the fluctuations in uncertainty when the ZLB does not bind.

5.3 SOURCES OFUNCERTAINTY The impulse responses show uncertainty is time-varying due

to exogenous volatility shocks or first moment shocks that interact with the state of the economy.

Figure 3adecomposes output growth uncertainty into its exogenous and endogenous sources using

counterfactual simulations conditional on the posterior mean parameters of our model. To isolate

the contribution of technology growth uncertainty, we turnoff the risk premium volatility shocks.

Similarly, we zero out the technology growth volatility shocks to identify the amount of risk pre-

mium uncertainty. We then turn off both volatility shocks todetermine the amount of endogenous
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(a) Decomposition of the exogenous and endogenous sources of uncertainty.
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Figure 3: Sources of output growth uncertainty in our baseline model.

uncertainty. We also show the endogenous amplification of the exogenous volatility shocks when

the Fed was most constrained using the solution to the unconstrained nonlinear model.

On average about95% of output growth uncertainty is due to the uncertainty that occurs with-

out second moment shocks, which we refer to as endogenous uncertainty. However, most of the

changesin uncertainty are driven by the exogenous volatility shocks. Growth volatility shocks are

the key driver in most periods, but risk premium volatility shocks play an important role in certain

parts of our sample. Typically, endogenous uncertainty is fairly constant, but it increases when the

policy rate is near or at its ZLB, which occurs in the mid 2000sand from 2009 to the end of the sam-

ple. The sharp increase in uncertainty in 2009, however, primarily occurred due to the endogenous

amplification of the exogenous volatility shocks, rather than through first moment shocks. The

markers in 2009Q1 show the counterfactual increase in uncertainty that would have occurred if the
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Fed was not constrained. Those results indicate that about8.5% ((0.48 − 0.43)/(1.03 − 0.43))

of the increase in uncertainty in 2009Q1 was due to endogenous uncertainty and about38%

((1.03− 0.82)/(1.03− 0.48)) was due to the endogenous amplification of second moment shocks.

Despite some nonlinear interactions between the exogenousvolatility shocks and the ZLB, we

are able to approximate the relative contribution of each volatility shock over time, similar to a

variance decomposition in a linear model. The dark bars infigure 3brepresent the technology

growth counterfactual relative to the endogenous uncertainty counterfactual (circles minus dia-

monds) and the light bars represent the risk premium counterfactual relative to the endogenous

uncertainty counterfactual (triangles minus diamonds), which is approximately equal to output

growth uncertainty relative to the endogenous uncertaintycounterfactual (solid minus diamonds).

The results reiterate that technology growth uncertainty is typically the biggest contributor to

changes in output growth uncertainty, but the two sources ofexogenous uncertainty typically move

together. There are two notable exceptions. One, the model predicts that risk premium uncertainty

precedes the 2001 recession. Two, technology growth uncertainty increases before the rise in risk

premium uncertainty during the Great Recession, but the effects of risk premium uncertainty linger

while the impact of technology growth uncertainty is negligible for a few years after the Great Re-

cession. During the Great Recession, technology growth andrisk premium volatility shocks have

nearly equal roles. By the end of the sample, output growth uncertainty declined to its lowest point.

5.4 EULER EQUATION DECOMPOSITION The rest of this section focuses on the effects of un-

certainty and other higher-order moments.Figure 4shows a filtered time series of each term in the

Euler equation decomposition in (16) over different forecast horizons. The values on the vertical

axes are the effects on current output in percentage point deviations from the balanced growth path.

The top row shows the decomposition over a 1-quarter horizon. The changes in output are al-

most entirely driven by expectations about output next quarter. The real interest rate had a smaller

role, typically reducing output by about0.1%. The peak effect was−0.37% during the Great Re-

cession, but that effect quickly declined as the economy rebounded. The higher-order terms show

output uncertainty had time-varying adverse effects on current output. The largest effect occurred

during the Great Recession, since the ZLB constraint made the economy more sensitive to adverse

shocks. However, that effect was short-lived because the notional rate was negative only until 2011.

The effects of uncertainty were small throughout our sample. Even during the Great Recession,

the peak increase in uncertainty reduced output by less than0.01%. Output skewness and both in-

flation uncertainty and inflation skewness also had very small effects. Interestingly, the effects of

uncertainty over a1-quarter horizon were similar to the impact effects of the exogenous volatility

shocks shown infigure 2. However, the results understate the effects of uncertainty because they

hide the impact that future real interest rates and higher-order moments have on expected output.
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Figure 4: Filtered decomposition of the effects on current output. The shaded regions denote NBER recessions. The
values on the vertical axes are the contributions to the percentage point deviation of detrended output from steady state.

17



RICHTER & T HROCKMORTON: A NEW WAY TO QUANTIFY THE EFFECT OFUNCERTAINTY

The middle left panel shows how expected output affected current output over horizons up to24

quarters. In most periods, the differences between currentand expected output were much larger

over horizons beyond1-quarter, which indicates that other factors, such as the real interest rate and

uncertainty, explained a larger fraction of the changes in output. We focus on a24-quarter horizon

because it is long enough that expected output barely matters for current output. For example, in

2009Q2 (the last quarter of the Great Recession) expected output in 2009Q3 explained74.3% of the

decline in current output, whereas expected output in 2015Q3 explained only1.6% of the decline.

Over those same horizons, the contribution of output uncertainty increased from2.9% to 11.9%.

The middle right panel shows the effect of output uncertainty over the horizons shown in the

left panel, but the values on the vertical axis are cumulative effects. Although the effect of output

uncertainty is small when it is conditional on expected output over a1-quarter horizon, it is more

significant over longer horizons that decompose the influence of expected future output. Over a

24-quarter horizon, output uncertainty on average decreasedcurrent output by about0.06% and the

largest effect was about0.15% in 2009Q1, which accounted for16.6% of the decline in that quarter.

The other higher order moments are shown in the bottom left panel. During the Great Reces-

sion, the peak effects of technology growth uncertainty, inflation uncertainty, and output skewness

over a24-quarter horizon were−0.023%, −0.005%, and−0.001%, respectively, and the average

effects were much smaller. We do not show the effect of inflation skewness because it is always

near zero. It is not surprising that inflation uncertainty and skewness had small effects because the

Fed aggressively targeted inflation throughout our sample.However, we expected a larger effect

of output skewness, especially during the Great Recession.The ZLB creates downside risk since

it prevents the Fed from responding to adverse shocks through conventional channels. Evidently,

those effects are small when controlling for other moments.The covariance between inflation and

output on average lowered output by0.02%, the second largest effect behind output uncertainty.

The bottom right panel shows the effect of output uncertainty over a24-quarter horizon along

with two of the counterfactuals shown infigure 3a. First, we plot the effect of output uncertainty

after removing the influence of the ZLB using the solution to the unconstrained nonlinear model.

The differences from the baseline path show how much the ZLB increased the adverse effects of

uncertainty. In most quarters, the differences are small because there is a low probability of going

to and staying at the ZLB. Larger differences between the twopaths occurred from 2008Q4 to

2009Q4, when the notional interest rate was well below zero.For example, in 2009Q1 output un-

certainty reduced output by about0.06 percentage points more than if the Fed was not constrained.

Second, we restore the ZLB constraint but zero out both exogenous volatility shocks. Since

first moment shocks are the main source of most of the uncertainty in the economy, they are also

the primary source of the adverse effects of output uncertainty. At its peak, endogenous uncertainty

only increased the adverse effects of output uncertainty byabout0.01 percentage points, whereas
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exogenous volatility shocks played a much larger role during the last two recessions. For example,

the volatility shocks without the ZLB contributed about0.04 percentage points to the decline in

output growth in 2009Q1 and their amplification contributedan additional0.06 percentage points.

The bottom right panel also plots the total effect of uncertainty—the sum of output, technology

growth, and inflation uncertainty—over a24-quarter horizon. On average, the three sources of un-

certainty lowered output by0.07 percentage points with a peak decline of0.17 percentage points.
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Figure 5:68% credible sets of the filtered effects on current output. The vertical bars denote NBER recessions. The
values on the vertical axes are the contributions to the percentage point deviation of detrended output from steady state.

The results infigure 4are based on the posterior mean. However, we can generate time series

for every draw from the posterior distribution.Figure 5shows the1 standard deviation (16%-84%)

credible sets for the effects of each type uncertainty over a24-quarter horizon. In a typical quarter,

the effect of output uncertainty ranges from−0.01% to+0.015% of the median effect. The effects,

however, are more asymmetric during recessions. For example, during the peak of the Great Re-

cession there was a68% chance output uncertainty decreased current output by at least0.12% and

it could have decreased it by as much as0.25%. The effects of technology growth and inflation un-

certainty are always much smaller than output uncertainty,even in the tail of the parameter distribu-

tion. In all three cases, the credible sets are much tighter than the range of estimates in the literature.

5.5 KEY PARAMETERS We determine the relative importance of each parameter for our Euler

equation decomposition by conducting posterior predictive analysis with the draws from the pos-

terior distribution,{θ̂i}1000i=1 . We focus on the effect of output uncertainty over a24-quarter horizon,

h(θ, t) ≡ −(γ/2)
∑24

j=1 vart(ŷt+j|θ, ε̄t, z̄t),

whereε̄t andz̄t are the median filtered states and shocks conditional on the posterior mean param-

eters. Fixing the states and shocks isolates the role of eachparameter. We calculateh(θ̂i, t) for all i
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to generate the credible sets infigure 5, which capture the effects of output uncertainty given each

posterior draw. Definēθi,ℓ as theith posterior draw conditional on the posterior mean of parameter

ℓ. As a counterfactual, we first calculateh(θ̄i,ℓ, t) using the procedure described at the end ofsec-

tion 4. We then calculate the root-mean square-deviation (RMSD) from the counterfactual given by

RMSD(ℓ, t) =

√

1
1000

∑1000
i=1 (h(θ̂i, t)− h(θ̄i,ℓ, t))

2.

Figure 6plots time series of the RMSD for the nine most consequentialparameters in the

model. A high RMSD for parameterℓ means the effect of output uncertainty on current output

is sensitive to that parameter. The risk premium persistence (ρs) and shock standard deviation

(σs) have the largest average RMSDs. Of the deep parameters, thecoefficient of relative risk

aversion (γ) and the monetary response to inflation (φπ) are the most important parameters. There

is also considerable variation in the importance of the parameters across time. For example, during

recessions the RMSD of each parameter increases, but the process parameters (right panel) become

relatively more important than the deep parameters. Outside recessions, the deep parameters (left

panel) are relatively more important, though the average RMSD of each parameter is much lower.
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Figure 6: Time series of the root-mean square-deviation of the effect of output uncertainty over a24-quarter horizon
(i.e., the effect on current output at the posterior draw minus the effect after fixing a parameter at its posterior mean).

The RMSD statistic summarizes the importance of a given parameter in every quarter of our

sample, but it does not show whether that parameter increases or decreases the effect of uncertainty.

By conditioning on a particular quarter, we can determine the sign.Figure 7shows scatter plots of

the deviation,∆i,ℓ,t ≡ h(θ̂i, t) − h(θ̄i,ℓ, t), for all posterior draws, conditional on parameterℓ and

t = 2008Q4. In other words, it shows the changes in the effect of output uncertainty that occur

when a given parameter deviates from its posterior mean. A positive (negative) value of∆i,ℓ,t

means output uncertainty has a smaller (larger) adverse effect on current output for a given draw.
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Figure 7: Scatter plots of the effect of output uncertainty on current output over a24-quarter horizon in 2008Q4 at each
posterior draw, conditional on fixing a parameter at its posterior mean. The values on the vertical axes are deviations
from the effect with the posterior mean parameters. The horizontal axes denote the parameter values corresponding to
the number of standard deviations away from the posterior mean. The dashed vertical lines are the posterior means.

The results depend on how each parameter affects expected volatility. The diagonal line is the

linear trend. When the parameters governing the risk premium (ρs, ρσs
, σ̄s, andσσs

) are above their

posterior means (vertical line) output uncertainty has a larger adverse effect because the variance

of the exogenous process and hence expected volatility increase. For example, the posterior mean

persistence of the risk premium,ρs, is 0.911. When that value is two standard deviations higher

(0.932), output uncertainty reduces output by0.13 percentage points more than at its posterior

mean. A higher price adjustment cost parameter also causes output uncertainty to have a larger ef-

fect because stickier prices make households more sensitive to changes in the nominal interest rate.

Larger values of the other parameters reduce the effect of output uncertainty on output. An in-

crease in the coefficient of relative risk aversion makes households less willing to substitute across

time, which makes output less volatile. Thus, output uncertainty has a smaller adverse effect, even

though households react more strongly to expected volatility. A higher monetary response to infla-
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tion has a similar effect because it also reduces expected future volatility. Interest rate smoothing

is a form of commitment by the Fed to reduce future inflation volatility, so the higher persistence

reduces expected volatility. Finally, a higher average growth rate raises the steady-state nominal

interest rate, which decreases the likelihood of ZLB eventsand therefore expected future volatility.

These results are particularly useful given the degree of parameter uncertainty in the literature.

By extrapolating from the trend line, it is easy to obtain a rough estimate for the effects of output

uncertainty and the likelihood of that outcome given any parameterization of the model. It is also

possible to conduct a similar exercise for the other momentsin the Euler equation decomposition.

5.6 WELFARE The cost of business cycles literature provides an alternative way to quantify the

effects of uncertainty than our Euler equation decomposition. That literature uses welfare analysis

to determine the consequences of different levels of volatility. The main difference between the two

methods is that our Euler equation decomposition quantifiesthe effects of different higher order

moments—including uncertainty—within aparticular model, whereas the welfare analysis quanti-

fies the effects of volatility by comparingdifferentmodels. Specifically, the cost of business cycles

literature measures the compensating variation of switching from a low to a high volatility model.

Given the household’s constant relative risk aversion utility function in our baseline model, the

compensating variation between modelsL (lower volatility) andH (higher volatility) is given by

λt = 1−

[

EtWc(c̃
H) + 1/((1− γ)(1− β))− EtWn(n

H) + EtWn(n
L)

EtWc(c̃L) + 1/((1− γ)(1− β))

]1/(1−γ)

, (17)

where

EtWc(c̃
ϑ) = E[

∑

∞

j=t β
j−t[((c̃ϑj )

1−γ − 1)/(1− γ)]|Ω̂t],

EtWn(n
ϑ) = E[

∑

∞

j=t β
j−t[χ(nϑ

j )
1+η/(1 + η)]|Ω̂t],

are the expected present-value of the household’s utility from consumption and disutility from

labor conditional on its information set at timet, Ω̂t, which contains the median filtered state and

the posterior mean parameters. Also,c̃ϑ andnϑ are the optimal choices of detrended consumption

and labor conditional on modelϑ ∈ {H,L}. We denote the higher (lower) volatility economy with

anH (L), where the expected path of consumption is lower (higher) due to precautionary saving.

We approximateWc andWn by integrating across1,000 simulations of10,000 quarters. Each

simulation is conditional on the state of the economy in a particular period and the posterior mean

parameters.λt is the fraction of consumption goods in the low volatility economy that would com-

pensate the household for the lower consumption path in the higher volatility economy. Whenλt >

0 the household is better off in the lower volatility economy.Appendix Fshows how to deriveλt.
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Figure 8: Percent of consumption goods under lower volatility needed to compensate the household for higher volatil-
ity. In each period, the welfare cost is conditional on the median filtered state from the posterior mean parameterization.

Figure 8shows four estimated compensating variations: the effect of all shocks (models (1)

and (4), x markers); the effect of only the stochastic volatility shocks (models (1) and (3), circles

markers); the effect of only the first-moment shocks (models(3) and (4), triangle markers); and

the effect of only the ZLB constraint (models (1) and (2), diamond markers). The compensating

variation is shown as the percent of consumption goods in thelower volatility or no ZLB models.

In the baseline model, the household requires compensationof about0.03% in every period to

be indifferent to a world in which there is no volatility (i.e., the constant path of consumption and

labor in the deterministic steady state), similar to the value in Lucas (1987) withγ = 2. There is

a small increase in the welfare cost during recessions. Across the sample, about75% of the com-

pensation stems from the volatility induced by the first-moment shocks to productivity growth, the

risk premium, and the interest rate. The remainder is due to the second-moment shocks and the

endogenous amplification of both first- and second-moment shocks by the ZLB. Compensation for

the uncertainty coming from second-moment shocks to productivity growth and the risk premium

is higher than the compensation required for the endogenousuncertainty induced by the ZLB.

Also, the higher welfare cost at the end of the Great Recession comes mostly from the interaction

of second-moment shocks with the ZLB rather than first-moment shocks interacting with the ZLB.

6 THE EFFECT OFCAPITAL ACCUMULATION

In our baseline model without capital, output is equal to consumption and the only way households

can save is by investing in a1-period nominal bond, which is in zero net supply. This section

extends the model so households can also invest in capital. In the data, investment is more volatile

than real GDP, especially during recessions, so it is important to add capital to the model since it

allows output, consumption, and investment to have different, potentially time-varying, volatilities.
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The final goods firm’s problem is unchanged. Intermediate firmi produces goods according to

yt(i) = kt−1(i)
α(ztnt(i))

1−α. It chooses its capital and labor inputs,nt(i) andkt−1(i), and its price,

pt(i), to maximize its profit function. In symmetric equilibrium,the optimality conditions imply

ỹft = (k̃t−1/gt)
αn1−α

t , (18)

αw̃tnt = (1− α)rkt (k̃t−1/gt), (19)

mct = w̃1−α
t (rkt )

α/((1− α)1−ααα), (20)

and the Phillips curve, (5), which is identical except for the change in the marginal cost definition.

The household chooses{ct, nt, bt, xt, kt}
∞

t=0 to maximize the same utility function subject to

ct + xt + bt/(itst) = wtnt + rkt kt−1 + bt−1/πt + dt,

kt = (1− δ)kt−1 + xt(1− ϕx(x
g
t − 1)2/2),

wherex is investment in physical capital,xg
t ≡ xt/(ḡxt−1) is the growth rate of investment relative

to the balanced growth rate,ϕx > 0 scales the size of the cost to adjusting investment, andk is the

capital stock, which earns a real returnrk and depreciates at rateδ. In addition to the first-order con-

ditions in the model without capital, (8) and (9), there are two new optimality conditions given by

qt = βEt[(c̃t/c̃t+1)
γ(rkt+1 + qt+1(1− δ))/gt+1], (21)

1 = qt[1− ϕx(x̃
g
t − 1)2 − ϕxx̃

g
t (x̃

g
t − 1)] + βϕxḡEt[qt+1(c̃t/c̃t+1)

γ(x̃g
t+1)

2(x̃g
t+1 − 1)/gt+1]. (22)

The detrended law of motion for capital and the aggregate resource constraint are given by

k̃t = (1− δ)(k̃t−1/gt) + x̃t(1− ϕx(x̃
g
t − 1)2/2), (23)

c̃t + x̃t = ỹt. (24)

Once again, we redefined variables that grow along the balanced growth path in terms of technol-

ogy. A competitive equilibrium includes infinite sequencesof quantities,{c̃t, ỹt, ỹ
f
t , nt, x̃t, k̃t}

∞

t=0,

prices,{w̃t, it, i
n
t , π

gap
t , mct, qt, r

k
t }

∞

t=0, and exogenous variables,{st, gt, σg,t, σs,t}
∞

t=0, that satisfy

the detrended equilibrium system, (1), (2), (5)-(11), (13), and (18)-(24), given the initial conditions,

{c−1, i
n
−1, x−1, k−1, g0, s0, εi,0, σg,0, σs,0}, and sequences of shocks,{εg,t, εs,t, εi,t, εσg,t, εσs,t}

∞

t=1.

The model is numerically too costly to estimate, so we calibrate the three new parameters. The

capital depreciation rate,δ, is calibrated to0.025. The cost share of capital,α, and the invest-

ment adjustment cost parameter,ϕx, are set to0.19 and4.06, respectively, which equal the mean

posterior estimates in Gust et al. (2017). Although there are some differences between our model

and the one in Gust et al. (2017) (e.g., their model includes sticky wages and variable capital uti-
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lization, whereas our model has stochastic volatility), webelieve these parameter values provide a

good approximation of what we would obtain if we estimated the model with Bayesian methods.

Fortunately, introducing capital does not change the consumption Euler equation we used to

construct the decomposition in the model without capital. We generate policy functions for each

term in the decomposition in the same way as the model withoutcapital, except we filter the data

with per capita real fixed investment growth in addition to the five observables we previously used.

Figure 9shows the influence of the different types of uncertainty. The left panel plots the

effects of consumption uncertainty over a 24-quarter horizon in the models with and without cap-

ital. In the capital model, consumption uncertainty on average decreases current consumption by

0.08%, which is only0.02 percentage points more than in our baseline model without capital. The

difference is more pronounced when the ZLB first binds. In 2008Q4 consumption uncertainty low-

ered consumption by0.22% compared with only0.14% in the baseline model, but that discrepancy

quickly dissipated. Furthermore, the median effect in the capital model is typically in the left tail

of the credible set implied by the baseline model. The right panel shows the impact of technology

growth and inflation uncertainty in the model with capital—the two other types of uncertainty in

the bond Euler equation. Both terms have nearly identical effects to those in the baseline model.

A major benefit of the capital model is that it provides a new Euler equation, (21), that we can

use to quantify the effects of the uncertainty about the realrental rate of capital and Tobin’sq on

current consumption. Using the method insection 4.3, a third-order Taylor approximation implies

γĉt ≈ γEtĉt+1 − ((β/ḡ)r̄kEtr̂
k
t+1 + (β/ḡ)(1− δ)Etq̂t+1 − q̂t −Etĝt+1)

− 1
2
(γ2 vart ĉt+1 + vart ĝt+1 + (β/ḡ)r̄k vart r̂

k
t+1 + (β/ḡ)(1− δ) vart q̂t+1)

− γ covt(ĉt+1, ĝt+1) + γ(β/ḡ)r̄k covt(ĉt+1, r̂
k
t+1) + γ(β/ḡ)(1− δ) covt(ĉt+1, q̂t+1)

+ (β/ḡ)r̄k covt(ĝt+1, r̂
k
t+1) + β((1− δ)/ḡ) covt(ĝt+1, q̂t+1)

+ 1
6
(γ3 skewt ĉt+1 + skewt ĝt+1 − (β/ḡ)r̄k skewt r̂

k
t+1 − β((1− δ)/ḡ) skewt q̂t+1),

(25)

which we can once again iterate forward to eliminate the influence of expected future consumption.

Several terms enter the same way as our previous decomposition. For example, theex-antevariance

of consumption and technology growth appear in (15) and (25), so they have the exact same effect

on consumption. The rental rate and Tobin’sq variance terms replace the inflation variance term.

The right panel also plots the new uncertainty terms over a 24-quarter horizon. Rental rate un-

certainty has a similarly small effect as inflation uncertainty. Unlike the other higher-order terms,

uncertainty about Tobin’sq has almost half as large of an effect on consumption as consumption

uncertainty, which shows the importance of capital adjustment costs for the transmission of uncer-

tainty. Overall, uncertainty about the return on capital (rental rate and Tobin’sq) has a larger influ-

ence on consumption than uncertainty about the real return on a risk-free nominal bond (inflation).
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Figure 9: Filtered decomposition of the effects on current consumption. The shaded regions denote NBER recessions.
The vertical axes are the contribution to the percentage point deviation of detrended consumption from its steady state.

7 COMPARISON WITH THETRADITIONAL VAR A PPROACH

The literature often adds a measure of uncertainty to the variables in a structural VAR and computes

impulse responses using a recursive identification scheme.4 The responses depend on where un-

certainty is ordered in the list of variables. If uncertainty is ordered first, then subsequent variables

in the VAR, which reflect information about the state of the economy, have no contemporaneous

effect on the responses to an uncertainty shock. If it is ordered last, then none of the preceding

variables in the VAR contemporaneously depend on uncertainty, so an uncertainty shock has no ef-

fect on impact. Therefore, the modeler must specify whetherthe uncertainty series is exogenous or

endogenous. The challenges are even greater when accounting for multiple sources of uncertainty.

Due to the nonlinearities introduced by stochastic volatility and the ZLB constraint, we are in-

terested in whether alinear VAR, commonly employed in the literature on uncertainty, can recover

the dynamic relationship between uncertainty and real activity predicted by our baselinenonlinear

model. We focus on the impulse response of output growth to a change in financial uncertainty,

Us,t =
√

Et[σ
2
υ,t+1]. Since financial uncertainty is exogenous in our structuralmodel, it is easy for

us to compare its effects to those in a VAR model and assess accuracy. The shocks in the VAR

are identified recursively and the variables—financial uncertainty, output growth, inflation, wage

growth, the risk premium, and the interest rate—are orderedfrom first to last in the same way as

Christiano et al. (2005).5 Appendix Eprovides additional information about our structural VAR.

4Alexopoulos and Cohen (2009) develop a proxy based on the number ofNew York Timesarticles on uncertainty.
Bachmann et al. (2013) use forecaster disagreement from theBusiness Outlook Survey. Leduc and Liu (2016) create
a measure based on respondents from Michigan Survey of Consumers who report uncertainty as a reason why it is a
bad time to purchase vehicles. Basu and Bundick (2017), Bekaert et al. (2013), and Bloom (2009) use the VIX. The
effect of an increase in these proxies varies widely, ranging from close to0% to over1%, depending on the shock size.

5We obtain very similar results using bivariate VARs with uncertainty ordered first and output growth second.
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Figure 10: Impulse responses of output growth to a 2 standarddeviation increase in financial uncertainty. The solid
lines are the median responses and the shaded regions denotethe1 standard deviation (16%-84%) credible sets.

Figure 10shows the responses to a 2 standard deviation financial uncertainty shock. The first

subplot shows the predictions of our baseline model given different initializations of the state.

When the response is initialized at the stochastic steady state (solid line), where the notional in-

terest rate,in, is 1.2%, the effect of financial uncertainty on output growth is negligible across the

whole horizon. However, when the response is initialized atthe median filtered state correspond-

ing to 2009Q2 (dashed line), wherein = −0.4% initially, output growth declines by0.07%. We

alternatively initialize the response at an average state vector across simulated quarters at the ZLB

such thatin = −1.5% initially (dashed-dotted line). In that case, the financialuncertainty shock

leads to a0.1% decrease in output growth on impact. In summary, our baseline model predicts the

impact effect of financial uncertainty on output growth depends on the initial state of the economy.

The simulated VARs in the next three subplots are estimated with data from short-sample sim-

ulations of the baseline model conditional on the posteriormean parameterization. The solid lines

represent the median response and the shaded regions represent the16%-84% credible sets. The

first simulated VAR is estimated using artificial data without any ZLB events (i.e.,in > 0 always).

The response of output growth to a financial uncertainty shock is close to zero across the whole

horizon, which is very similar to the prediction of our baseline model initialized at steady state.

The next two simulated VARs are estimated with artificial data where the notional rate falls be-

low −0.4% or −1.5% for at least one quarter, so the responses represent averages across quarters
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when the ZLB does and does not bind. Given these initial states, the median impact effects of finan-

cial uncertainty on output growth are−0.06% and−0.10%, respectively. Although the responses

are not significantly different from zero, the median impactof financial uncertainty shocks iden-

tified by the VAR decreases as the quantity and severity of ZLBevents increase in the simulated

data and it is quantitatively similar to our structural model. Therefore, thelinear VAR does a good

job capturing the endogenous amplification of exogenous financial uncertainty shocks at the ZLB.

Finally, we estimate the same VAR with U.S. data. The second to last subplot excludes the

Great Recession and subsequent ZLB period (1986Q1-2007Q4), while the last subplot is based on

the sample used to estimate our baseline model (1986Q1-2016Q2). The results are similar to the

predictions of our structural model. The effect of uncertainty is small and statistically insignificant

in the pre-ZLB period, whereas it is much larger and significant when the ZLB period is included.

Interestingly, the structural VAR estimates based on U.S. data are also very similar to the ef-

fects of output uncertainty from our Euler equation decomposition.6 Given the stark differences in

methodology, the similarity between the two sets of resultsis noteworthy. They provide strong evi-

dence that aggregate uncertainty has limited effects on theeconomy, even when the the ZLB binds.

A major advantage of our Euler equation decomposition is that it does not require us to take a

stand on whether a given type of uncertainty is endogenous orexogenous. It can also account for

multiple forms of uncertainty and how they nonlinearly interact with the economy. In other words,

our decomposition is able to quantify the overall effect of all types of uncertainty in each period by

accounting for the first and second moment shocks that best explain macro and uncertainty data. It

also has the added advantage of being able to quantify the effects of other higher-order moments.

8 CONCLUSION

The literature often uses exogenous volatility shocks to examine the effects of aggregate uncer-

tainty. We develop a new way to quantify the effects of uncertainty that accounts for both exoge-

nous and endogenous uncertainty sources. We first estimate anonlinear New Keynesian model

with a ZLB constraint and stochastic volatility, while linking to both macro and uncertainty data.

We then decompose output into its expected mean, variance, and skewness with the consumption

Euler equation. Our decomposition reveals that uncertainty had a relatively small impact. Despite

the nonlinearities in the model, output uncertainty never reduced output by more than0.22%, even

during the Great Recession, and other higher-order momentshad much smaller effects on output.

A major benefit of our method is its flexibility to examine the effects of uncertainty in a broad

class of models. While some models are too costly to estimate, it is possible to calculate the ex-

pected volatility or skewness surrounding any endogenous variable in the model. After calibrating

6We obtain very similar results if we use the macro uncertainty index instead of the financial uncertainty index.
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the model, one could then filter the data while linking to an empirical measure of any higher-order

moment. Using our results as a benchmark, future research could examine other sources of endoge-

nous uncertainty, such as borrowing constraints, firm default, limited information, irreversible in-

vestment, search frictions, or heterogeneity to examine whether uncertainty has significantly larger

effects. Alternative models may endogenously explain a larger fraction of the changes in uncer-

tainty and the effects of uncertainty may become larger in some periods. However, our results sug-

gest the peak effects of uncertainty may not significantly increase in other models, given that uncer-

tainty had limited effects in our model despite the significant nonlinearity that occurs at the ZLB.
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RAM ÍREZ (2015): “Fiscal Volatility Shocks and Economic Activity,”American Economic Re-

view, 105, 3352–84.
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A DATA SOURCES

We drew from the following data sources to estimate our New Keynesian and VAR models:

1. Financial Uncertainty index: Monthly. Source: Ludvigson et al. (2017),h = 3 (1-quarter

forecast horizon). Data available fromhttp://www.sydneyludvigson.com/.

2. Macro Uncertainty Index : Monthly. Source: Jurado et al. (2015),h = 3 (1-quarter forecast

horizon). Data available fromhttp://www.sydneyludvigson.com/.

3. Real GDP: Quarterly, chained 2009 dollars, seasonally adjusted. Source: Bureau of Eco-

nomic Analysis, National Income and Product Accounts, Table 1.1.6 (FRED ID: GDPC1).

4. GDP Deflator: Quarterly, seasonally adjusted, index 2009=100. Source:Bureau of Eco-

nomic Analysis, National Income and Product Accounts, Table 1.1.9 (FRED ID: GDPDEF).

5. Average Hourly Earnings: Monthly, production and nonsupervisory employees, dollars per

hour, seasonally adjusted. Source: Bureau of Labor Statistics (FRED ID: AHETPI).

6. Interest Rate Spread (Risk Premium): Monthly, Moody’s seasoned Baa corporate bond

yield relative to the yield on 10-Year treasury bond. Source: Board of Governors of the

Federal Reserve System, Selected Interest Rates, H.15 (FRED ID: BAA10YM)

7. Effective Federal Funds Rate:Daily. Source: Board of Governors of the Federal Reserve

System, Selected Interest Rates, H.15 (FRED ID: FEDFUNDS).

8. Civilian Noninstitutional Population : Monthly. Source: U.S. Bureau of Labour Statistics,

Current Population Survey (FRED ID: CNP16OV).
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9. Fixed Investment: Quarterly, billions of dollars, seasonally adjusted. Source: Bureau of

Economic Analysis, National Income and Product Accounts, Table 1.1.5 (FRED ID: FPI).

We applied the following transformations to the above series:

10. Per Capita Real GDP: 1,000,000×Real GDP/Population.

11. Real Wage: 100×Average Hourly Earnings/Price Index.

12. Real Investment: Average FPI in 2009×(FPI Quantity Index/100). Quantity Index FRED

ID: A007RA3Q086SBEA.

13. Per Capita Real Investment: 1,000,000×Real Investment/Population.

We converted the monthly or daily time series to a quarterly frequency by applying time averages

over each quarter. In order, the variables used to estimate our VAR model are series 1, 10, 4, 11, 6,

and 7. The observables used to estimate our nonlinear model without capital include series 10, 4,

7, 1, and 2. When we filter the data using the model with capital, we add series 13 as an observable.

B EULER EQUATION DECOMPOSITION

The bond Euler equation is given by

1 = βEt[(ỹt/ỹt+1)
γ(stit/(gt+1πt+1))] = Et[exp(̂ıt + ŝt − π̂t+1 − ĝt+1 + γ(ŷt − ŷt+1))],

where a hat denotes log deviation from the balanced growth path. After reorganizing, we obtain

−(̂ıt + ŝt + γŷt) = log( Et[exp(−π̂t+1 − ĝt+1 − γŷt+1)])

= log( Et[1− (π̂t+1 + ĝt+1 + γŷt+1) +
1
2
(π̂t+1 + ĝt+1 + γŷt+1)

2−

1
6
(π̂t+1 + ĝt+1 + γŷt+1)

3 + · · · ])

= log

(

1− (Et[π̂t+1] + Et[ĝt+1] + γEt[ŷt+1])+

1
2

(

Et[π̂
2
t+1] + Et[ĝ

2
t+1] + γ2Et[ŷ

2
t+1]+

2Et[π̂t+1ĝt+1] + 2γEt[ĝt+1ŷt+1] + 2γEt[π̂t+1ŷt+1]
)

−

1
6

(

Et[π̂
3
t+1] + Et[ĝ

3
t+1] + γ3Et[ŷ

3
t+1] + 6γEt[π̂t+1ĝt+1ŷt+1]+

3Et[π̂
2
t+1ĝt+1] + 3γEt[π̂

2
t+1ŷt+1] + 3Et[ĝ

2
t+1π̂t+1]+

3γEt[ĝ
2
t+1ŷt+1] + 3γ2Et[ŷ

2
t+1π̂t+1] + 3γ2Et[ŷ

2
t+1ĝt+1]

)

+ · · ·

)

,

where the second equality follows from the Maclaurin seriesfor ex = 1+ x+ x2/2 + x3/6 + · · · .
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Subsequently applying a third-order Maclaurin series tolog(1− x) ≈ −x− x2/2− x3/3 implies

ı̂t + ŝt + γŷt ≈ Et[π̂t+1] + Et[ĝt+1] + γEt[ŷt+1]

− 1
2
((Et[π̂

2
t+1]− (Et[π̂t+1])

2) + (Et[ĝ
2
t+1]− (Et[ĝt+1])

2) + γ2(Et[ŷ
2
t+1]− (Et[ŷt+1])

2))

− γ(Et[π̂t+1ŷt+1]− Et[π̂t+1]Et[ŷt+1])− γ(Et[ĝt+1ŷt+1]− Et[ĝt+1]Et[ŷt+1])

− (Et[π̂t+1ĝt+1]− Et[π̂t+1]Et[ĝt+1])

+ 1
6
(Et[π̂

3
t+1]− 3Et[π̂t+1]Et[π̂

2
t+1] + 2(Et[π̂t+1])

3)

+ 1
6
(Et[ĝ

3
t+1]− 3Et[ĝt+1]Et[ĝ

2
t+1] + 2(Et[ĝt+1])

3)

+ 1
6
γ3(Et[ŷ

3
t+1]− 3Et[ŷt+1]Et[ŷ

2
t+1] + 2(Et[ŷt+1])

3),

after dropping the higher-order terms. Therefore, currentoutput is approximated by

γŷt ≈ γEtŷt+1 − r̂t −
1
2
(vart π̂t+1 + vart ĝt+1 + γ2 vart ŷt+1)

− (γ covt(π̂t+1, ŷt+1) + γ covt(π̂t+1, ĝt+1) + covt(π̂t+1, ŷt+1))

+ 1
6
(skewt π̂t+1 + skewt ĝt+1 + γ3 skewt ŷt+1),

wherer̂t = ı̂t + ŝt −Etπ̂t+1 −Etĝt+1 is theex-antereal rate,vart(xt+1) = Et[x̂
2
t+1]− (Et[x̂t+1])

2

is the variance ofx, skewt x̂t+1 = Et[x̂
3
t+1]−3Et[x̂t+1]Et[x̂

2
t+1]+ 2(Et[x̂t+1])

3 is the third moment

of x, andcovt(xt+1, yt+1) = Et[xt+1yt+1]− Et[xt+1]Et[yt+1] is the covariance betweenx andy.

The derivation of (25) follows very similar steps, although it contains significantly more terms.

C SOLUTION METHOD

C.1 BASELINE MODEL We begin by compactly writing the detrended equilibrium system as

E[f(vt+1,vt, εt+1)|zt, ϑ] = 0,

wheref is a vector-valued function,v = (g, s, σg, σs, c̃, ỹ, ỹ
f , n, w̃,mc, i, in, πgap) is a vector of

variables,ε ≡ [εg, εs, εi, εσg
, εσs

]′ is a vector of shocks,zt = (εi,t, log(σg,t), log(σs,t), gt, st, mpt−1),

andϑ are the parameters. Sinceint−1 andỹt−1 only appear in the policy rule, we definedmpt−1 =

(int−1)
ρi(ỹt−1)

φy(ρi−1) and rewrote the rule asint = mpt−1(̄ı(π
gap
t )φπ(gtỹt/ḡ)

φy)1−ρi exp(σiεi,t).

There are many ways to discretize the exogenous state variables,εi,t, log(σg,t), andlog(σs,t).

We use the Markov chain in Rouwenhorst (1995), which Kopeckyand Suen (2010) show out-

performs other methods for approximating autoregressive processes. The bounds ongt, st, and

mpt−1 are set to±3%, ±2%, and±2% of the deterministic steady state to contain the filtered state

variables. We discretize the state variables into(4, 9, 7, 7, 7, 7) evenly-spaced points. There are
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D = 86,436 nodes in the state space, and the realization ofzt on noded is denotedzt(d). The

Rouwenhorst method provides integration nodes for[εi,t+1(m), log(σg,t+1(m)), log(σs,t+1(m))]

that are the same as the respective state variables. However, the processes forgt+1 andst+1 do

not have a standard autoregressive form because of the stochastic volatility. Thus, the first moment

shocks,[εg,t+1, εs,t+1], are discretized separately from the volatility processes. The policy func-

tions are then interpolated at realizations ofgt+1(m) andst+1(m) that can occur between nodes in

the state space. We use the same number of interpolation nodes as the state variables,(4, 9, 7, 7, 7),

orM = 12,348, and the Rouwenhorst method provides weights,φ(m), for m ∈ {1, . . . ,M}.

For the policy functions, we approximatec̃t(zt) andπgap
t (zt). Our choice of policy functions,

while not unique, simplifies solving for the other variablesin the nonlinear system of equations

givenzt. The following steps outline our global policy function iteration algorithm:

1. Use Sims’s (2002)gensys algorithm to solve the log-linear model without the ZLB im-

posed. Then map that solution onto the discretized state space to initializec̃0 andπgap
0 .

2. On iterationj ∈ {1, . . . , Niter} and for eachd ∈ {1, . . . , D}, use Chris Sims’scsolve

to find c̃t andπgap
t to satisfyE[f(·)|zt(d), ϑ] ≈ 0, whereNiter is the number of iterations.

Guessing̃ct = c̃j−1(d) andπgap
t = π

gap
j−1(d), approximateE[f(·)|zt(d), ϑ] as follows:

(a) Solve for{ỹt, ỹ
f
t , i

n
t , it, w̃t, mpt} given c̃t, π

gap
t , andzt(d).

(b) Linearly interpolate the policy functions,c̃j−1 andπgap
j−1, at the updated state variables,

zt+1(m), to obtainc̃t+1(m) andπgap
t+1(m) on every integration node,m ∈ {1, . . . ,M}.

(c) Given{c̃t+1(m), πgap
t+1(m)}Mm=1, solve for the other elements ofvt+1(m) and compute:

E[f(vt+1,vt(d), εt+1)|vt(d), ϑ] ≈
∑M

m=1 φ(m)f(vt+1(m),vt(d), εt+1(m)).

Whencsolve converges, set̃cj(d) = c̃t andπgap
j (d) = πgap

t .

3. Repeat step 2 untilmaxdistj < 10−6, wheremaxdistj ≡ max{|c̃j − c̃j−1|, |π
gap
j − π

gap
j−1|}.

When that occurs, the algorithm has converged to an approximate nonlinear solution.

Figure 11shows the distribution of the absolute value of the errors inbase10 logarithms for

the consumption Euler equation and the Phillips curve. For example, an error of−3 means there

is a mistake of1 consumption good for every1,000 goods. The mean Euler equation error is

−3.96 and the mean Phillips curve error is−2.32. By construction, the errors on nodes used in

the solution algorithm are less than the convergence criterion, 10−6. The larger average errors

are due to linear interpolation of the policy functions withrespect to the(gt, st, mpt−1) states. To

measure the errors between the nodes, we created a new grid with a total ofD = 850,500 nodes

by increasing the number of points in the(gt, st, mpt−1) dimensions to(15, 15, 15). We used

the same number of points in the(εi,t, log(σg,t), log(σs,t)) dimensions since they are discretized
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Figure 11: Distribution of Euler equation and Phillips curve errors in base 10 logarithms

with the Rouwenhorst method, which means the correspondingintegration weights and nodes are

state dependent. Therefore, the reported errors are consistent with the accuracy of the integral

calculated when solving the model. Calculating the errors between the nodes corresponding to the

exogenous state variables would require changing the numerical integration method (e.g., Gauss-

Hermite quadrature). We decided not to show those errors because then the accuracy of the integral

used to compute the errors would be inconsistent with the methods used to compute the solution.

C.2 CAPITAL MODEL We solve the model with capital in the same way as the baselinemodel

without capital. The state vector is the same as the baselinemodel, except it includes two additional

endogenous state variables,xt−1 andkt−1. The bounds ongt, st, mpt−1, xt−1 andkt−1 are set

to ±3%, ±1.5%, ±2%, ±10%, and±7% of steady state. We discretize the state variables into

(4, 7, 7, 7, 7, 7, 7, 11) points respectively, so there areD = 5,176,556 nodes in the state space. We

use the most points on the capital dimension because it has the widest grid. Once again, we set the

number of points on each shock equal to the number of points onthe corresponding state variable.

D ESTIMATION ALGORITHM

We use a random walk Metropolis-Hastings algorithm to estimate our model with quarterly data

from 1986Q1 to 2016Q2. To measure how well the model fits the data, we use the adapted particle

filter described in Algorithm 12 in Herbst and Schorfheide (2016), which modifies the filter in

Stewart and McCarty (1992) and Gordon et al. (1993) to betteraccount for the outliers in the data.

D.1 METROPOLIS-HASTINGS ALGORITHM The following steps outline the algorithm:

1. Specify the prior distributions, means, variances, and bounds of each element of the vector

of Ne estimated parameters,θ ≡ {γ, ϕf , φπ, φy, ḡ, π̄, ρi, ρg, ρs, ρσg
, ρσs

, σi, σ̄g, σ̄s, σσg
, σσs

}.

36



RICHTER & T HROCKMORTON: A NEW WAY TO QUANTIFY THE EFFECT OFUNCERTAINTY

2. We match data on per capita real GDP,RGDP/CNP , the GDP deflator,DEF , the federal

funds rate,FFR, the macro uncertainty series in Jurado et al. (2015),UM , and the financial

uncertainty series in Ludvigson et al. (2017),UF . The vector of observables is given by

x̂
data
t ≡ [∆ log(RGDPt/CNPt), ∆ log(DEFt), log(1 + FFRt/100)/4, z(UMt), z(UFt)],

where∆ denotes a difference,z(·) is a standardized variable, andt ∈ {1, . . . , T}. When we

filter the data using the model with capital, we add per capitareal investment,RI/CNP , to

the vector of observables, sôxdata
t also includes∆ log(RIt/CNPt).

3. Find the posterior mode to initialize the preliminary Metropolis-Hastings step.

(a) For alli ∈ {1, . . . , Nm}, whereNm = 5,000, apply the following steps:

i. Draw θ̂i from the joint prior distribution and calculate its densityvalue:

log ℓpriori =
∑Ne

j=1 log p(θ̂i,j|µj, σ
2
j ),

wherep is the prior density function of parameterj with meanµj and varianceσ2
j .

ii. Given θ̂i, solve the model according toAppendix C. If the algorithm converges,

then compute the stochastic steady state, otherwise repeatstep 3(a)i and redraŵθi.

iii. If the stochastic steady state exists, then use the particle filter in section D.2to ob-

tain the log-likelihood value for the model,log ℓmodel
i , otherwise repeat step 3(a)i.

iv. The posterior log-likelihood islog ℓposti = log ℓpriori + log ℓmodel
i

(b) Calculatemax(log ℓpost1 , . . . , log ℓpostNm
) and find the corresponding parameter vector,θ̂0.

4. Approximate the covariance matrix for the joint posterior distribution of the parameters,Σ,

which is used to draw candidates during the preliminary Metropolis-Hastings step.

(a) Locate the draws with a likelihood in the top decile. Stack theNm,sub = (1 − p)Nm

draws in aNm,sub ×Ne matrix,Θ̂, and definẽΘ = Θ̂−
∑Nm,sub

i=1 θ̂i,j/Nm,sub.

(b) CalculateΣ = Θ̃′Θ̃/Nm,sub and verify it is positive definite, otherwise repeat step 3.

5. Perform an initial run of the random walk Metropolis-Hastings algorithm.

(a) For alli ∈ {0, . . . , Nd}, whereNd = 25,000, perform the following steps:

i. Draw a candidate vector of parameters,θ̂candi , where

θ̂i
cand ∼







N(θ̂0, c0Σ) for i = 0,

N(θ̂i−1, cΣ) for i > 0.

We setc0 = 0 and tunec to target an overall acceptance rate of roughly30%.
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ii. Calculate the prior density value,log ℓpriori , of the candidate draw,̂θcandi as in 3(a)i.

iii. Given θ̂candi , solve the model according toAppendix C. If the algorithm converges,

compute the stochastic steady state, otherwise repeat 5(a)i and draw a neŵθcandi .

iv. If the stochastic steady state exists, then use the particle filter in section D.2to

obtain the log-likelihood value for the model,log ℓmodel
i , otherwise repeat 5(a)i.

v. Accept or reject the candidate draw according to

(θ̂i, log ℓi) =



















(θ̂candi , log ℓcandi ) if i = 0,

(θ̂candi , log ℓcandi ) if min(1, ℓcandi /ℓi−1) > û,

(θ̂i−1, log ℓi−1) otherwise,

where û is a draw from a uniform distribution,U[0, 1], and the posterior log-

likelihood associated with the candidate draw islog ℓcandi = log ℓpriori + log ℓmodel
i .

(b) Burn the firstNb = 5000 draws and use the remaining sample to calculate the mean

draw, θ̄preMH =
∑NpreMH

i=Nb+1 θ̂i, and the covariance matrix,ΣpreMH . We follow step 4 to

calculateΣpreMH but use allNd −Nb draws instead of just the upperpth percentile.

6. Following the procedure in step 5, perform a final run of theMetropolis-Hastings algorithm,

whereθ̂0 = θ̄preMH andΣ = ΣpreMH. We setNd = 100,000 and keep every100th draw.

The remaining1,000 draws form a representative sample from the joint posteriordensity.

D.2 ADAPTED PARTICLE FILTER Henceforth, our definition ofvt from Appendix Cis referred

to as the state vector, which should not be confused with the state variables for the nonlinear model.

1. Initialize the filter by drawing{εt,p}0t=−24 for all p ∈ {0, . . . , Np} and simulating the model,

whereNp is the number of particles. We initialize the filter with the final state vector,v0,p,

which is approximately a draw from the model’s ergodic distribution. We setNp = 40,000.

2. Fort ∈ {1, . . . , T}, sequentially filter the data with the linear or nonlinear model as follows:

(a) Forp ∈ {1, . . . , Np}, draw shocks from an adapted distribution,εt,p ∼ N(ε̄t, I), where

ε̄t maximizesp(ξt|vt)p(vt|v̄t−1) andv̄t−1 =
∑Np

p=1 vt−1,p/Np is the mean state vector.

i. Use the model solution to update the state vector,vt, givenv̄t−1 and a guess for̄εt.

Definevh
t ≡ Hvt, whereH selects the observable variables from the state vector.

ii. Calculate the measurement error (ME),ξt = v
h
t − x̂

data
t , which is assumed to be

multivariate normally distributed,p(ξt|vt) = (2π)−3/2|R|−1/2 exp(−ξ′tR
−1ξt/2),

with covariance matrix,R ≡ diag(σme,yg , σme,π, σme,i, σme,um, σme,uf)
2.

iii. The probability of observingvt, givenv̄t−1, isp(vt|v̄t−1) = (2π)−3/2 exp(−ε̄′tε̄t/2).
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iv. Maximize p(ξt|vt)p(vt|v̄t−1) ∝ exp(−ξ′tR
−1ξt/2) exp(−ε̄′tε̄t/2) by solving for

the optimal̄εt. We converted MATLAB’sfminsearch routine to Fortran.

(b) Use the model solution to predict the state vector,vt,p, givenvt−1,p andεt,p.

(c) Calculateξt,p = v
h
t,p − xt. The unnormalized weight on particlep is given by

ωt,p =
p(ξt|vt,p)p(vt,p|vt−1,p)

g(vt,p|vt−1,p,xt)
∝

exp(−ξ′t,pR
−1ξt,p/2) exp(−ε′t,pεt,p/2)

exp(−(εt,p − ε̄t)′(εt,p − ε̄t)/2)
.

Without adaptation,̄εt = 0 andωt,p = p(ξt|vt,p), as in a basic bootstrap particle filter.

The time-t contribution to the log-likelihood isℓmodel
t =

∑Np

p=1 ωt,p/Np.

(d) Normalize the weights,Wt,p = ωt,p/
∑Np

p=1 ωt,p. Then use systematic resampling with

replacement from the swarm of particles as described in Kitagawa (1996) to get a set

of particles that represents the filter distribution and reshuffle{vt,p}
Np

p=1 accordingly.

3. The log-likelihood islog ℓmodel =
∑T

t=1 log ℓ
model
t .

E VECTORAUTOREGRESSIONMODEL

The structural VAR model is given by

A0yt = a0 + A1yt−1 + · · ·+ Apyt−p + εt, t = 1, . . . , T,

whereεt ∼ N(0, I). The reduced-form VAR model is obtained by invertingA0 and is given by

yt = b0 +B1yt−1 + · · ·+Bpyt−p + υt, t = 1, . . . , T,

whereb0 = A−1
0 a0 is aK×1 vector of intercepts,Bj = A−1

0 Aj areK×K coefficient matrices for

j = 1, . . . , p, υt = A−1
0 εt is aK × 1 vector of shocks that has a multivariate normal distribution

with zero mean and variance-covariance matrixΣ, andy is aK×1 vector of endogenous variables.

The VAR is estimated with data generated from the baseline model or analogous variables in

U.S. data. The variables are ordered as in Christiano et al. (2005). We rewrite the model asYT =

βX + U and calculate the least squares estimates,β̂ andΣ̂. For example, whenp = 4 the param-

eters areβ = [b0, B1, B2, B3, B4] and the regressors areX = [1, Y ′

T−1, Y
′

T−2, Y
′

T−3, Y
′

T−4]
′ where

YT−i = [y1−i, . . . , yT−i] andU = [υ1, . . . , υT ]. The data includes the financial uncertainty series

in Ludvigson et al. (2017), per capita real output growth, the GDP implicit price deflator inflation

rate, real wage growth, the risk premium, and the federal funds rate. When using artificial data, we

setp = 1, consistent with the structural model. When using U.S. data, we calculate the Bayesian

information criterion (BIC). According to the BIC, the dataprefers one lag, so we focus on that

specification. The structural shocks are identified by a Cholesky decomposition,̂Σ = (Â−1
0 )′Â−1

0 .
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F WELFARE COST DERIVATION

The representative household’s preferences are given by

EtW (c̃, n) = Et

∞
∑

j=t

βj−t

[

c̃1−γ
j − 1

1− γ
− χ

n1+η
j

1 + η

]

.

Whenγ 6= 1, the time-t welfare cost,λt, satisfies

EtW (c̃H , nH) ≡ EtW ((1 − λt)c̃
L, nL)

= Et

∞
∑

j=t

βj−t

[

((1 − λt)c̃
L
j )

1−γ − 1

1− γ
− χ

(nL
j )

1+η

1 + η

]

= (1− λt)
1−γEt

∞
∑

j=t

βj−t
(c̃Lj )

1−γ

1− γ
−

∞
∑

j=t

βj−t

1− γ
− χEt

∞
∑

j=t

βj−t
(nL

j )
1+η

1 + η

= (1− λt)
1−γ



Et

∞
∑

j=t

βj−t
(c̃Lj )

1−γ − 1

1− γ
+

∞
∑

j=t

βj−t

1− γ



−

∞
∑

j=t

βj−t

1− γ
− χEt

∞
∑

j=t

βj−t
(nL

j )
1+η

1 + η

= (1− λt)
1−γ

(

EtW
c(c̃L) +

1

(1 − γ)(1− β)

)

−
1

(1− γ)(1− β)
− EtW

n(nL).

Solving forλt yields (17) in the main text.

G ESTIMATION DIAGNOSTICS

The section provides additional results related to the nonlinear estimation of our baseline model.

Table 3shows how the unconditional moments for the observables match equivalent statistics in the

data. We also show trace plots of our posterior draws (figure 12), kernel densities of the estimated

parameters (figure 13), and the median filtered observables (figure 14) and shocks (figure 15).

Real GDP Growth (̂yt) Inflation Rate (πt) Interest Rate (it)

Mean SD Mean SD Mean SD

Data 1.41 2.40 2.18 0.99 3.68 2.77
Model 1.78 2.27 2.56 0.93 4.83 1.43

(1.10, 2.49) (1.56, 3.25) (1.99, 3.11) (0.63, 1.37) (3.59, 6.05) (0.89, 2.16)

Autocorrelations Cross-Correlations

(ŷt, ŷt−1) (πt, πt−1) (it, it−1) (ŷt, πt) (ŷt, it) (πt, it)

Data 0.31 0.63 0.99 0.03 0.18 0.50
Model 0.27 0.76 0.91 −0.11 0.16 0.32

(0.02, 0.51) (0.63, 0.86) (0.83, 0.96) (−0.46, 0.19) (−0.09, 0.44) (−0.16, 0.68)

Table 3: Unconditional moments. For each draw from the posterior distribution, we run10,000 simulations with the
same length as the data. To compute the moments, we first calculate time averages and then the means and quantiles
across the simulations. The values in parentheses are(5%, 95%) credible sets. All values are annualized net rates.
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Figure 12: Trace plots. We obtained100,000 draws from each posterior distribution and kept every100th draw.
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Figure 13: Prior (solid lines) and posterior kernel (dashedlines) densities of the estimated parameters.
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Figure 14: Time paths of the data (dashed line) and the medianfiltered series from the baseline model (solid line).
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Figure 15: Median paths of the estimated shocks normalized by their respective posterior mean standard deviation.
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