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ABSTRACT

This paper develops a new way to quantify the effects of aggesuncertainty that ac-
counts for exogenous and endogenous sources. First, weayssiBn methods to estimate a
nonlinear New Keynesian model with stochastic volatilibdaa zero lower bound constraint
on the nominal interest rate. We discipline the model by hiatcdata on uncertainty, in ad-
dition to common macro time series. Second, we use the Egletion to decompose output
into expected output and the expected variance and skewhessput. We then filter a time
series for each term. Our method captures the effects oEhigter moments over horizons
beyondl quarter by recursively decomposing expected output. Oveq@arter horizon, out-
put uncertainty reduced output less tliabil % every quarter, similar to volatility shocks in our
model. Over horizons that remove the influence of expectépubuoutput uncertainty on av-
erage reduced outp(t06% and the peak effect was15% during the Great Recession, similar
to structural VAR estimates. Other higher-order momentsrhach smaller effects on output.
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1 INTRODUCTION

There is widespread agreement that uncertainty decreasasraic activity. The debate rests on
whether the effect is quantitatively significant, whichiidult to determine for two reasons. One,
uncertainty is unobserved, so there is disagreement onaonatitutes a good measure. Until re-
cently, the literature has relied on proxies for uncertgistich as realized or implied volatility, in-
dexes based on keywords in print or online media, and surasgd forecast dispersion, which are
often weakly correlated with each other and loosely coreteatith the definition of uncertainty.
Two, uncertainty is endogenous. Not only can uncertairfgcaBconomic activity, as intuition
suggests, what is happening in the economy can affect amtttA few mechanisms emphasized
in the literature include financial frictions and consttaithat create an adverse feedback loop be-
tween net worth and asset prices [Brunnermeier and Sanii2@i4)], incomplete information
that endogenously creates pessimism during recessiojge[Faum et al. (2017); Saijo (2017);
Van Nieuwerburgh and Veldkamp (2006)], and a zero lower ddiZi.B) constraint on the nomi-
nal interest rate that restricts a central bank’s abilitgtébilize the economy [Plante et al. (2018)].
The literature often uses exogenous volatility shocks &mere the effects of aggregate un-
certainty. This paper develops a new approach that accéamb®th exogenous and endogenous
uncertainty sources. First, we use Bayesian methods to&stia nonlinear New Keynesian model
with stochastic volatility and an occasionally binding ZkBnstraint. We discipline the model by
matching data on uncertainty, in addition to common maareetseries. This step allows us to
decompose the sources of uncertainty and generate a dea-gdolicy function for any moment.
Second, we use the Euler equation to decompose output ipected output and the expected
variance and skewness of output. We then filter a time sestesaich term in the decomposition.
A major benefit of our method is that it captures the effectdiigher-order moments over
horizons beyond quarter by recursively decomposing expected output. Ovequarter horizon,
output uncertainty reduced output less than % every quarter, similar to volatility shocks in our
model. Over horizons that remove the influence of expectguubuwutput uncertainty on average
reduced outpud.06% and the peak effect was15% during the Great Recession, similar to struc-
tural VAR estimates. Roughly one-third of the increasemythe Great Recession was due to the
ZLB. When we extend our model without capital so househoddsinvest, the average effect of
output uncertainty increases t60.08% and the peak effect rises t00.22%, but the differences
are not statistically significant. Other higher-order matsdhad much smaller effects on output.
We conduct two exercises to uncover the drivers of our resuline, we use counterfactual
simulations to decompose uncertainty into its endogenadseaogenous sources. Endogenous
uncertainty—uncertainty that naturally arises due to finstment shocks—typically accounted
for 95% of total uncertainty. However, nearly all of the changesngartainty were driven by the



volatility shocks. One exception is when the Fed was comgtda In 2009Q18.5% of the increase
in uncertainty was due to endogenous uncertainty wisifé was due to the endogenous amplifica-
tion of volatility shocks. Two, we determine the importaméeach parameter in our model for the
results of our Euler equation decomposition using posteredictive analysis. While price adjust-
ment costs play an important role as others have emphasigkdversion and the monetary re-
sponse to inflation had the largest impact on the effects oéiainty among the deep parameters.
We conclude our analysis by calculating the welfare effettscertainty following the cost of
business cycles literature. We find the welfare cost of ildlabever exceeded.04% of consump-
tion. We also compare impulse responses to a financial wmerishock in our nonlinear model
to the same shock in a structural VAR using a recursive ifleation scheme, since that is the most
common way to identify the effects of uncertainty. Usingadsimulated from the nonlinear model,
the VAR generates quantitatively similar responses to ttuctiral model. There is almost no re-
sponse of output in data without the ZLB and a larger effed&ita with a lengthy ZLB event. Sim-
ilar differences in the responses occur in U.S. data withveitttbut the ZLB period in the sample.
Although we use a familiar model as a starting point for ustirding the effects of higher-
order moments, our method is adaptable to a broad class aflmdebr example, it can be applied
to models with limited information, irreversible investmgborrowing constraints, search fric-
tions, heterogeneous agents, or other important sourcasmefvarying endogenous uncertainty.
While those features may make the model too costly to estinagiproximate solutions are attain-
able either locally with perturbation methods or globaliyhwrojection methods. With a solution
in hand, it is possible to calculate the expected varianakewness surrounding any endogenous
variable and link it to an empirical measure while filteritg data. Given a particular calibration,
the filter can then generate time series for the terms in atgr Equation. Therefore, our method
provides a way to compare the effects of uncertainty or diiggr-order moments across models.
The paper proceeds as followSection 2places our work within the vast literature on uncer-
tainty. Section 3describes our model as well as the exogenous and endogemouss of uncer-
tainty. Section 4outlines our solution and estimation proceduf@sction Sorovides our estimation
results, including the parameter estimates and the eftdéeatacertainty and skewness on output.
Section Gshows how our results change when we introduce cag@tdtion 7draws comparisons
between the impulse responses in our nonlinear model amdastl VAR.Section 8concludes.

2 RELATED LITERATURE

Research that examines the effects of aggregate uncgitaisiconsidered several different shocks.
In a small open-economy real business cycle model, Fear@aXdlaverde et al. (2011) examine
volatility shocks to a country-specific interest rate sgrebhey find al standard deviation shock
lowers output).15%-0.2% in Argentina and Ecuador arid01%-0.02% in Brazil and Venezuela.
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Most papers develop closed-economy New Keynesian modelsnth¥ and Zanetti (2013)
focus on monetary policy volatility shocks in a model with@apital. They find doubling the
volatility reduces output growth by only.03%. Born and Pfeifer (2014) introduce variable cap-
ital utilization and investment adjustment costs. Thewshosimultaneoug standard deviation
increase in uncertainty about government spending, mgnatéicy, and capital and labor taxes re-
duces output by onl§.065%. In contrast, Fernandez-Villaverde et al. (2015) find atitty shock
to only capital taxes reduces output®y?% and the effects are much larger when the ZLB binds.

In a textbook model with recursive preferences, Basu anddBkun2017) find al standard
deviation preference volatility shock—a proxy for demamdertainty—reduces output y2%.
de Groot et al. (2018) show the way the shock enters theiege€es creates an asymptote in the
parameter space that amplifies the output response. Withewtsymptote, preference volatility
shocks have a small effect. Leduc and Liu (2016) includecéefirctions and habit formation
and find al standard deviation increase in technology volatility—axyrfor supply uncertainty—
increases unemployment By6%. In our paper, both supply and demand uncertainty variegexo
nously due to stochastic volatility shocks to the risk pn@miand the growth rate of technology.

The volatility shocks in our model also have a small impaitthe effect of output uncertainty
from our Euler equation decomposition is an order of magieitlarger. That result emphasizes
the importance of accounting for the expected effects oértamty over horizons beyoridquar-
ter. Another major benefit of our approach is that it diretittks the measures of uncertainty in
our model—second moments—to equivalent measures in thenddt likelihood based methods,
whereas previous work relied on first moments such as reaitgcinterest rates, and fiscal vari-
ables. We also quantify the effects of other higher-ordemmnats, such as the skewness of output
and the covariance between output and inflation, which hesaived less attention in the literature.

As an alternative to exogenous volatility shocks, seveapleps propose models that endoge-
nously generate uncertainty. There are several mechan@nessegment emphasizes the role of a
financial sector under complete information, where thersisvend duration of financial crises are
stochastic. Most papers focus on crises that result fromdiaéfrictions and collateral constraints
[Brunnermeier and Sannikov (2014); He and Krishnamurtyt@; Mendoza (2010)], while a few
papers incorporate the role of firm default [Arellano et 2016); Gourio (2014); Navarro (2014)].

Another segment examines the implications of incompldteimation. Some of the papers fea-
ture learning with aggregate shocks [Fajgelbaum et al.{2@aijo (2017); Van Nieuwerburgh and
Veldkamp (2006)], while others focus on firm-specific shofgkg and Saijo (2016); Straub and
Ulbricht (2015)]. In these models, an adverse shock undanaeetric learning lowers economic
activity and makes it harder for households to learn abauetionomy, which amplifies the effects
of first moment shocks. In our model, the effects of first armbad moment shocks are amplified
by the ZLB [Basu and Bundick (2017); Fernandez-Villaveedal. (2015); Nakata (2017); Plante



et al. (2018)]. We bridge the gap between the exogenous alatjenous uncertainty literatures by
providing a flexible methodology that is easily applied todals with both types of uncertainty.
Our paper is also related to the cost of business cycleatiitey. Lucas (1987) examines the
welfare cost of “instability” by calculating the fractiorf consumption goods a household would
give up each period to eliminate volatility. With constaglative risk aversion preferences, Lucas
finds the welfare cost of the consumption volatility in p@édrld War Il data ranges frod.008%
(log utility) to 0.17% (risk aversion;y = 20). The conclusion is that the cost of instability is in-
significant! We build on this literature by calculating welfare at eacinpm our sample using an
estimated model that matches both macro and uncertairdy b find the welfare costs of first
moment shocks are well within the range Lucas reported. rtikomments shocks have an even
smaller welfare effect, consistent with the values regbiteXu (2017). We view this important
exercise as complementary to our Euler equation deconmgasiHowever, a benefit of our de-
composition is that it shows which higher-order momentsaost important at each point in time.

3 NEw KEYNESIAN MODEL AND UNCERTAINTY MEASURES

We use a New Keynesian model similar to An and Schorfheid@{R@xcept it includes a ZLB
constraint and stochastic volatility on technology growaial the risk premium on a nominal bond.

3.1 HRMS The production sector consists of a continuum of monopcéily competitive in-
termediate goods firms and a final goods firm. Intermediateifienf0, 1] produces a differentiated
good,y (i), according tay! (i) = zn,(i), wheren(i) is the labor hired by firm andz, = ¢,z is
technology, which is common across firms. Deviations froethlanced growth rate, follow

gt = (1 - pg)g + PgGt-1 + 0gt€q.t, 0< Pg < L, Eg ™~ N<07 1)7 (1)
Ogt = 0g(0g1-1/04)" 79 exp(04,5,1), 0 < po, <1, €5, ~N(0,1), (2)

where the standard deviation of the technology shegkiollows an independent log-normal pro-
cess g, ande, are uncorrelated) to add a source of time-varying supplgtamty to the model.
The final goods firm purchase;;é(i) units from each intermediate firm to produce the final

good,y! = [ y/ (1)V/di]?/¢~1), whered > 1 is the elasticity of substitution. It then maxi-
mizes dividends to determine its demand function for intgtiate good, v/ (i) = (p,(i)/p:) %y,
wherep, = fO )1=9di)*/(1=9) is the price level. Following Rotemberg (1982), each inrm

diate firm pays a prlce adjustment castjf (i) = o (pi(i)/(7pe-1(i)) — 1)%{ /2, wheregp; > 0
scales the cost and is the gross inflation rate along the balanced growth patter&fbre, firm
i chooses, (i) andp, (i) to maximize the expected discounted present value of futividends,

1Several papers examine these estimates in differentgefliester et al. (2014); Otrok (2001); Tallarini (2000)].
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E, >0 qixdi (1), subject to its production function and the demand for itslpct, wherey, , = 1,
Qi1 = B(¢/¢1)" is the pricing kernel between periodsandt + 1, ¢, = H;tfﬂ Ui
dy(i) = pe()y] (1) /pe — wene (i) — adj] (i), and a tilde denotes a detrended variable (ie=, z/ 2).

In symmetric equilibrium, all firms make identical decisspso the optimality conditions imply

g{ - ntv (3)
mct - wt» (4)
(™ — D)l =1 — 0+ Ome, + BorBy[(6/éen) (7% — Drft @l /3])), ()

wherer{*” = 7, /7 is the inflation gap. In the special case where prices aregtyfflexible (i.e.,
oy =0),w, = (6 —1)/6, which equals the inverse of the gross markup of price ovegimal cost.

3.2 HouseHoLDS The representative household choo§asn;, b, }°, to maximize expected
lifetime utility, Eo "%, 84[((ct/2:) " —1)/(1—7) —xn, 7"/ (1+n)], wherey is the coefficient of
relative risk aversiony > 0 is a preference parameter that determines the steadyadtatesupply,
1/n is the Frisch elasticity of labor supply,is consumptions is labor hoursp is the real value
of a privately-issued-period nominal bond that is in zero net supply, dhgdis the mathematical
expectation operator conditional on information in pefioéollowing An and Schorfheide (2007),
households receive utility from consumption relative @ #wvel of technology, which is a proxy for
the habit stock. That assumption allows us to use additsggharable preferences and parameterize
the degree of risk aversion while maintaining a balancedtrpath. The household’s choices are
constrained by, + b;/(izs;) = wyny + b1 /7 + dy, Wherer is the gross inflation ratey is the
real wage ratej is the gross nominal interest rate set by the central bartkd ana real dividend
received from owning the intermediate goods firms. FollgMdmets and Wouters (2007) and
Gust et al. (2017)s is a shock to the risk premium on the nominal bond and it ewoseording to

st = (1 — ps) + pssi—1 + 054651, 0 < ps < 1, 5 ~N(0, 1), (6)
Us,t = 65(Us,t—1/6s)pas eXp(UUSEUS,t)a 0 S pas < ]-7 505 ~ N(Oa ]-)7 (7)

where the standard deviation of the risk premium shegkfollows an independent log-normal
processd, ande, are uncorrelated) to introduce time-varying demand unad#st into the model.
The first order conditions to the household’s constrainddropation problem imply

1= BE[(Ct/Cur1) (seir/ (T Ger1))]- )

Equation @) is the Euler equation we will use to show the effects of uasibigher-order moments.



3.3 MONETARY PoLicy The central bank sets the gross nominal interest rate aogoial

iy = max{1,1i}'}, (10)
iy = (i?—l)pi (Z(Wfap)% (gtgt/(g?gt—l))%)l_pi eXp<Ui5i,t>> 0<p <1, e~ N<07 1)7 (11)

wherey is output (the amount of final goodg/,, minus the resources lost due to price adjustment
costsadj’), i" is the gross notional interest rategnd# are the steady-state or target values of the
inflation and nominal interest rates, apngdand¢, determine the central bank’s responses to devia-
tions of inflation from the target rate and deviations of atigrowth from the balanced growth rate.

3.4 COMPETITIVE EQUILIBRIUM The aggregate resource constraint is given by

ét - gt» (12)
e = (1= pp(mf™ — 1)2/2)3]. (13)

To make the model stationary, we redefined all of the vargthlat grow along the balanced growth
path in terms of technology (i.et; = x;/z;). A competitive equilibrium consists of infinite se-
quences of quantitie$¢,, i, 7 , .} 24, prices {wy, mey, iy, i, 797 }52,,, and exogenous variables,
{st, 9,041, 054172, that satisfy the detrended equilibrium systef);((L3), given the initial con-
ditions,{c_1,i", go, S0, €i,0, 04,0, 0s,0}, and the sequences of shocks, ;. €4+, €it, €0, it Eout 21 -

3.5 MEASURES OFUNCERTAINTY The stochastic volatility processeg&) @nd (7), create ex-
ogenous sources of time-varying supply and demand unogrtdincertainty is measured by the
expected standard deviation of future technology growththa future risk premium, which equal

Ugt = \/Et[(9t+1 — E19i11)% =/ B [U§,t+1]v

Us = \/Et[(3t+1 — Eis111)% = \/ Et[ag,t+1]'

We classify these types of uncertainty as exogenous bedhagefluctuate due to temporary
changes in the standard deviation of each shock. For exanfiflee volatility of technology
growth temporarily increases, then supply uncertainty aisreases and lowers economic activity.
Uncertainty also arises endogenously in any nonlinear onaxmdel. Following Plante et al.
(2018), the endogenous uncertainty surrounding trendgibgrowthy! = ¢,4,/7:_1, is given by

Uy = /Bl — Blfia])?) (14)

which is the same way we measure exogenous uncertaintyptakeecalculated with an endoge-



nous variable. Both measures of uncertainty remove thaqtedde component of the forecasted
variable instead of only a constant trend, so they distisigbetween uncertainty and conditional
volatility. However, the endogenous uncertainty measwteomly fluctuates due to exogenous
volatility shocks, but also due to events that happen in tomemy. For example, when the no-
tional interest rate is negative, the economy is more seasd first moment shocks that adversely
affect the economy, which increases the endogenous umtgrégoout output growth. The ZLB

constraint also creates uncertainty by amplifying theotftd the two exogenous volatility shocks.

4 NUMERICAL METHODS AND DECOMPOSITION

4.1 SOLUTION METHOD We solve the nonlinear model with the policy function itevatalgo-
rithm described in Richter et al. (2014), which is based anttteoretical work on monotone op-
erators in Coleman (1991). The presence of stochasticiNtylabmplicates the solution method
because the realizations ¢inds depend on the realizations of the stochastic volatilitycpeses.
We discretize the state space and then approximate theastarkiolatility processes?2) and
(7), and first moment shocks,, ¢, ands;, using the/V-state Markov chain described in Rouwen-
horst (1995). The Rouwenhorst method is attractive becausay requires us to interpolate
along the dimensions of the endogenous state variableshwi@kes the solution more accurate
and faster than quadrature methods. For each combinatibie éfst and second moment shocks,
we calculate the future realizations of technology and tle premium according tolj and ©).
To obtain initial conjectures for the nonlinear policy ftioos, we solve the log-linear analogue of
our nonlinear model with Sims’s (2002) gensys algorithmefkve minimize the Euler equation
errors on every node in the discretized state space and ¢erifumaximum distance between the
updated policy functions and the initial conjectures. Fynave replace the initial conjectures with
the updated policy functions and iterate until the maximustethce is below the tolerance level.
The algorithm produces policy functions for consumptiod arflation. To estimate the model,
we also create a policy function for output growth uncetigi(iL4), by interpolating the implied
policy function for output and integrating. SAppendix Cfor a description of the solution method.

4.2 ESTIMATION PROCEDURE We estimate the nonlinear model with quarterly data on per
capita real GDPRGDP/CN P, the GDP implicit price deflatorDEF’, the federal funds rate,
FFR, the macro uncertainty series in Jurado et al. (20L3),, and the financial uncertainty series
in Ludvigson et al. (2017)/ F', from 1986Q1 to 2016Q2. The vector of observables is given by

xdate = [N log(RGDP,/CNP,), Alog(DEFE,), log(1+ FFR,/100)/4, 2(UM,), 2(UF,)],

whereA denotes a difference and ) is a standardized variabl&ppendix Aprovides our sources.



6 T T T T T T T

5L —— Macro Uncertainty (UM)

—e— Financial Uncertainty (UF)

4+ Stock Market Volatility (VXO) —
P —o— Forecast Dispersion (SPF)

| /R

11» Wt v |

SRRV /\ ‘ ok K A\ N

0¢ —~7 \ 6 4 ‘." ~ ‘ A 3 / & \ .
] \ . o/ R

REAZ L Ve k| =) Mt

) 1 1 1 1 1 1 1

1986 1990 1994 1998 2002 2006 2010 2014

Figure 1: Measures of uncertainty in the data.

Figure 1plots the standardized 1-quarter ahéadl andU F' series, which inform the param-
eters in our model and ensure it produces the same fluctsationncertainty as the data. The
series are based on a factor augmented VAR that accounigZaomacroeconomic and47 fi-
nancial variables. Repeated simulations of the FAVAR aegluie obtain estimates of uncertainty
for each macro (financial) variable and then averaged tarokhte UM (U F) time series. The
benefit of these series is that they are calculated the samasv@4), so they distinguish between
uncertainty and conditional volatility and reflect the uriamty surrounding a rich set of variables.

For comparison, we also plot two other popular measures cértainty: the Chicago Board
Options Exchange S&P 100 Volatility IndeX (X O) and the dispersion in forecasts of real GDP
growth 1-quarter ahead from the Survey of Professional Forecaiiét$’). The different uncer-
tainty measures generally move together, but they also sigwificant independent variation. For
example, sharp increases in tH&X'O, SPF, andU F' series occur with some regularity, but they
are far less frequent in thé M series. After the start of the Great Recession, the cowaekbe-
tween the uncertainty measures all excedtlédbut they are nedr.4 prior to that date. The one
exception is the correlation betweé&if’ and thel X O, which was abové.8 in both subperiods.

We calibrate four parameters&ble 1. The subjective discount factag?, is set t00.9987. The
preference parametey, is set so the labor supply along the balanced growth pathleg/(s of the
available time. The elasticity of substitution betweendmé, is set to6, which matches the esti-
mate in Christiano et al. (2005) and corresponds 20% average markup of price over marginal
cost. The Frisch labor supply elasticity,n, is set to3, to match the estimate in Peterman (2016).

We use Bayesian methods to estimate the remaining parametear model. For each draw
from the parameter distribution, we solve the nonlinear eh@hd approximate the likelihood
using a particle filter. We determine whether to accept a dwétlv a random walk Metropolis-



Balanced Growth Discount Factor 3 0.9987 Real GDP Growth Rate ME SD  oe,ys 0.00268

Frisch Elasticity of Labor Supply 1/ 3 Inflation Rate ME SD Ome,r 0.00109
Elasticity of Substitution 0 6 Federal Funds Rate ME SD Ome,i 0.00094
Balanced Growth Labor Supply = 0.33 Macro Uncertainty ME SD Tme,um 0.44721
Number of Particles N, 40,000 Financial Uncertainty ME SD Omeuf 0.44721

Table 1: Calibrated parameters for the nonlinear model anticte filter.

Hastings algorithm. The filter usé$,000 particles and systematic resampling with replacement
following Kitagawa (1996). To help the model better matchliets during the Great Recession,
we adapt the particle filter described in Fernandez-\@tde and Rubio-Ramirez (2007) to include
the information contained in the current observation adiogr to Algorithm 12 in Herbst and
Schorfheide (2016). Seppendix Dfor a more complete description of our estimation procedure
A major difference from other filters is that the particlediltequires measurement error (ME)
to avoid degeneracy—a situation when all but a few partigdeits are near zero, so the equation
linking the observables to equivalent variables in the rhisdgiven byxdee = xmedel 4 ¢, where

)A(;nodel — [log(yi‘1>7 10g(71't)7 log(it), Z(Uyg,t)a Z(Us,t>]7

§ ~ N(0,%) is a vector of MEs and = diag([07. o1 Ome rs Tme.is Tomeums Tme.ns))- FOllOWING
Herbst and Schorfheide (2016), we set the ME varianc2g%oof their variance in the data, except
the ME variance for the policy rate is setx% because the federal funds rate is less noisy and it af-
fects the level of uncertainty predicted by the model nea#ihB. We link output uncertainty to the
macro uncertainty index and risk premium uncertainty tofih@ncial uncertainty index because
Ludvigson et al. (2017) find financial uncertainty is an exuages impulse that causes recessions,
whereas macro uncertainty endogenously responds to dtbeksthat affect the business cycle.
In our model, output uncertainty is endogenous, wherelk$pramium uncertainty is exogenous.
The entire algorithm is programmed in Fortran using Open Btfel executed on a cluster with
512 cores. We parallelize the nonlinear solution by distribgtihe nodes in the state space across
the available cores. To increase the accuracy of the filegalculate the model likelihood on each
core and then evaluate whether to accept a candidate draa bashe median likelihood. This im-
portant step reduces the variance of the model likelihooossamultiple runs of the particle filter.
Our estimation procedure has three stages. First, we coadnode search to create an initial
variance-covariance matrix for the parameters. The camaé matrix is based on the parameters
corresponding to the0th percentile of the likelihoods fro,000 draws. Second, we perform an
initial run of the Metropolis Hastings algorithm witt,000 draws from the posterior distribution.
We burn off the first5,000 draws and use the remaining draws to update the varian@tance
matrix from the mode search. Third, we conduct a final run efNtetropolis Hastings algorithm.



We obtain100,000 draws from the posterior distribution and then thinllog to limit the effects of
serial correction in the parameter draws, so our postersriloution has a sample ¢f000 draws.

4.3 BEULER EQUATION DECOMPOSITION Our goal is to determine how changes in uncertainty
affect output, taking into account all first and second manséocks as well as endogenous dy-
namics. One way to quantify the effect of uncertainty in agiperiod is by decomposing output
with the Euler equation9j. A third-order approximation around the balanced grovathpmplies

U ~ By — %f’t - Covt(ﬁ-t-i-l) ?)t+1) - Covt(gt-i-lv ?Qt+1) - %Covt(ﬁtﬂa §t+1) (15)

1 - . 2 . 1 - ~ 3 N
— Z(Val't Qi1 T vary T + Y7 var yt+1) + a(skewt Je+1 + SkeWt Ter1 7Y SkeWt yt+1>7

wherevar,, skew;, andcov, denote the variance, third moment, and covariance of ablarcndi-
tional on information at time, 7, = i, + $; — Eym1 — Ei g 1S theex-antereal interest rate, and
a hat denotes log deviation from the balanced growth patppendix Bprovides the derivation.
We omit higher-order covariance terms as well as fourthepeshd higher terms because they
had almost no effect on output in our sample. The varian@ys&ss, and covariance terms quan-
tify the effect of the uncertainty, upside and downside,résid the pairwise linear relationships be-
tween output, inflation, and technology growth. Higher askrsion makes households less willing
to intertemporally substitute consumption goods, whiclk@sdhem less sensitive to the real inter-
est rate and more sensitive to the variance and skewnesgmitolvlost of our analysis will focus
on the variance of output. That term will have the same effeatutput regardless of which Euler
equation is used for the decomposition because the pri@ngekalways enters in the same way.
The decomposition shows how the different types of unaettiaand skewness affect current
output over a-quarter horizon. If we recursively substitute for expedigture output, we obtain

A ~ 1 q A~
Ut = Eyyrrg — ;Et Ej:l Tt+j—1

- Z?:l(COVt(thH, Ji+j) + €oVe(Grtss Ges) + % coVi(Tetjs Grvj))

_ 1
2y

(16)
Z?Zl(vart Gu+j + var, iy + 72 vary ey )

1\ . A 3 -
+ 5 i1 (skewy gy j + skewy 7ty + 7 skewy Gpy ),

whereq > 1 is the forecast horizon. The sum of each variance term @gerarters captures the
effect of a given type of uncertainty, conditional on exgelobutput in quartey. Wheng becomes

2Decompositions of equilibrium conditions have been usestudy other topics. Basu and Bundick (2015) derive
a similar decomposition to ours in an endowment economy Irtog@ovide intuition for how the Fed can offset the
effects of uncertainty at and away from the ZLB, but they doqu@antify the terms. Parker and Preston (2005) use the
Euler equation to decompose consumption growth into a &stezrror, the real interest rate, a measure of preferences,
and a precautionary saving channel. Chung and Leeper (2B@H)and Sargent (2011), Berndt et al. (2012), and
Mason and Jayadev (2014) all use the government budgetraomso determine the key drivers of government debt.

10



sufficiently large, the conditional expectation drops duhe decomposition, so we are able to de-
termine the unconditional effects of each higher-order miomExpected output can hide the effect
of higher-order moments in future quarters. By decomposkpgcted future output, we can show
how the uncertainty, skewness, and covariance terms affigatit over horizons beyoridquarter®
Given a draw from the posterior distribution, we quantifg gffect of each term on output in
three steps. First, we create policy functions fortbe+ 1 variables in the decomposition by inte-
grating acros$0,000 g-quarter simulations initialized at each node in the stpées. Although the
variables are represented in deviations from the balane®matly path, the policy functions inherit
the nonlinearities from the solution. Second, we create tg@ries for the variables in the de-
composition at each horizon by interpolating the policydiions at the median filtered states and
shocks in each time period. Third, we weight each variablgdgoefficient in the decomposition.

5 ESTIMATED EFFECTS OFUNCERTAINTY

We first show the posterior parameter distributions, impuésponses, and sources of output un-
certainty. Then we show the results of our Euler equatiomuhgosition and analyze which pa-
rameters are mostimportant. The section concludes by sigdhve welfare cost of business cycles.

5.1 FRIOR AND POSTERIORDISTRIBUTIONS The first four columns ofable 2display the es-
timated parameters and information about the priors. Thoe for the coefficient of relative risk
aversion is taken from An and Schorfheide (2007). The pffarshe steady state growth rate and
the target inflation rate are set to the average per capita @&h rate and the average inflation
rate over our sample period. The priors for the monetarycpgarameters, which follow Guerrén-
Quintana and Nason (2013), are chosen so the distributmres the values in Taylor (1993) as
well as stronger responses that could explain data dure@ltfB period. The priors for the per-
sistence parameters are diffuse, but all of the means, efardhe growth rate, are set o6 since
a modest degree of persistence is needed to explain theldeggriors for the standard deviations
are also diffuse but less diffuse than in An and Schorfhe2@®7) and Smets and Wouters (2007),
since our nonlinear model generates more volatility thaagous unconstrained linear models.
The last four columns display the posterior means, standiritions, and0% credible sets
for the estimated parameters. Low frequency movementseimiéicro and financial uncertainty
time series coupled with sharp increases in both serieaglthie Great Recession generate highly
persistent stochastic volatility processes with largecklstandard deviations. For example, a two
standard deviation supply uncertainty shock caug¥si&:s increase in the volatility of technology
growth with a half-life of about 5.9 quarters. The monetary policy parameters imply a high aegre

SAfter iterating, we obtairt; [COVH_J‘ (l‘t+.j+1 , yt+j+1)] = COV¢ (xt+,ja yt+j) — COVy¢ (Et+j [$t+j+1]7 Et+,j [yt+j+1])
by the law of total covariance. In our derivation, we igndre second term because its effects are quantitatively small
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Prior Posterior

Parameter Dist. Mean SD Mean SD 5% 95%

Risk Aversion ) Gamm 2.0000  0.5000 3.00551  0.44806 2.35252 3.81243
Price Adjustment Costy) Norm 100.0000 20.0000 141.00914 19.95554 110.36190 175.77686
Inflation Responsey;) Norm 2.0000  0.2500 2.54332  0.19854 2.21212 2.85598
Output Responsep() Norm 0.5000  0.2000 1.04678  0.15152 0.79593 1.29649
Average Growth ) Norm 1.0040  0.0010 1.00439  0.00058 1.00337 1.00534
Average Inflation {) Norm 1.0055  0.0010 1.00649  0.00041 1.00579 1.00718
Int. Rate Persistencey) Beta 0.6000  0.2000 0.84086  0.01902 0.80740 0.87024
Growth Persistencepf) Beta 0.4000  0.2000 0.51433  0.12352 0.29503 0.70706
Risk Persistencep() Beta 0.6000  0.2000 0.91050  0.01084 0.89163 0.92723
Growth SV Persistencef,) Beta 0.6000  0.2000 0.95721  0.01890 0.92614 0.98109
Risk SV Persistencey,) Beta 0.6000  0.2000 0.93308  0.01617 0.90404 0.95725
Int. Rate Shock SDd;) IGam 0.0025  0.0025 0.00127  0.00017 0.00102 0.00157
Growth Shock SD4&,) IGam 0.0075  0.0075 0.00371  0.00054 0.00288 0.00463
Risk Shock SD &) IGam 0.0025  0.0025 0.00139  0.00022 0.00107 0.00177
Growth SV Shock SD4,,) IGam 0.1000  0.0250 0.11216  0.02350 0.07647 0.15372
Risk SV Shock SD«,,) IGam 0.1000  0.0250 0.11855  0.02218 0.08428 0.15666

Table 2: Prior and posterior distributions of the estimagtathmeters. The last two columns showitieand95th per-
centiles of each marginal posterior distribution. The niéglestimated with quarterly data from 1986Q1 to 2016Q2.

of interest rate smoothing and strong responses to real G@#lyand inflation, which are neces-
sary for the model to explain the long ZLB period. The meameses of the annualized technol-
ogy growth and inflation rates ater7% and2.62%, which are slightly higher than the values in the
data since they are unconditional and must compensated@xyectation of the ZLB period. The
mean coefficient of relative risk aversion is consistenhwih and Schorfheide (2007). The price
adjustment cost parameter implies a slope of the Phillipgecof about).035, which is in line with
other estimates in the literature. Overall, the priors aostgrior means are consistent with Gust
et al. (2017), who estimate a similar model with an occadiphinding ZLB constraint but with-
out stochastic volatilityAppendix Gprovides additional estimation results, including thenlegr
densities of the parameters, median filtered observabtéstarcks, and unconditional moments.

5.2 IMPULSE RESPONSES We begin our analysis by showing impulse responses to fit an
second moment shocks to illustrate the underlying dynatmidke model. Figure 2plots the
responses to a standard deviation positive risk premium, risk premiumatity, growth, and
growth volatility shock. The parameters are set to theitgroe means and the simulations are
initialized at two different states. Our benchmark simolais initialized at the stochastic steady
state and reflective of any state of the economy where théithdsexpectation of hitting the ZLB.
We compare the baseline impulse responses to the respohsegive notional rate is negative
by initializing the simulation at the filtered state vectorm®sponding to 2009Q2. The effect of
mean reversion is removed from the responses by plottingaheentage point difference (percent
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Figure 2: Impulse responses t®2atandard deviation positive shock at and away from the ZLi S$teady-state
simulation (solid line) is initialized at the stochastieatly state. The other simulation (dashed line) is inigaliat

the filtered state corresponding to 2009Q2 so the ZLB bintis.vErtical axes are in percentage point deviations from
the baseline simulation, except uncertainty is a percearig. The horizontal axes denote the time period in quarters

change for output uncertainty) from a counterfactual satiah without a shock in the first quarter.
The risk premium and growth volatilities are initializedtheir stochastic steady states in both
simulations, so the level shocks are not amplified by exogerbanges in volatility over time and
the impact effects of the volatility shocks are not distdtbg the log-normal volatility processes.
A higher risk premium (first column) in either initial statauses households to postpone con-
sumption, which lowers output growth and inflation on impaathen the Fed is not constrained
by the ZLB, it responds to the shock by reducing its policgrathe impact on output uncertainty
is small since the Fed is able to stabilize the economy. I9Q®) the higher risk premium leads to
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an expected ZLB duration @fquarters on impact. The Fed cannot respond by lowering lisypo
rate, which causes a larger decline in output growth. Thdtressa larger increase in output uncer-
tainty since households expect a wider range of futurezaiadin of output growth. In other words,
the model endogenously generates uncertainty when the #d3 blue to a risk premium shock.
Similar to the level shock, a positive shock to the volatidif the risk premium (second column)
lowers output growth and inflation. In steady state, the Fjdsas its policy rate to stabilize the
economy, so the effect of the volatility shock is small eveaugh output uncertainty rises far
more than it does in response to the level shock. When the Zh&sbhowever, the increase in
uncertainty nearly doubles, which magnifies the effect apuwigrowth and inflation. Hence, the
model also endogenously creates uncertainty by amplifyiageffects of second moment shocks.
Level and volatility shocks to technology growth have gtadively and quantitatively different
effects than risk premium shocks. A positive shock to te@toogrowth (third column) increases
output growth and decreases inflation like a typical supplyck, so the Fed faces a tradeoff
between stabilizing inflation and output growth unlike wathisk premium shock. In steady state,
the policy rate immediately increases since the responeetoutput gap dominates the response
to the inflation gap. The ZLB initially binds in 2009Q2, buetincrease in the notional rate causes
a quick exit from the ZLB afteit quarter. The delayed increase in the policy rate causeglalyli
larger boost in output growth and a smaller decline in irdlatiin contrast with the risk premium
shock, a positive technology growth shock causes outpurtaioty to decline because it reduces
the probability that the ZLB binds next period. However, tegponses are smaller in magnitude.
Growth volatility shocks cause bigger changes in uncegtdiran level shocks. Similar to a risk
premium volatility shock, a positive growth volatility stlo(fourth column) reduces output growth
and inflation, which leads to a lower nominal interest ratewkver, the responses differ in a few
ways. One, growth volatility directly affects output voléy. Therefore, uncertainty increases
more than it does in response to a risk premium volatilitycghdwo, the response of output uncer-
tainty is similar in both initial states. Three, the incre@s output uncertainty away from the ZLB
is much larger than the increase from a risk premium votgtsihock. Therefore, growth volatility
shocks play a larger role in explaining the fluctuations inartainty when the ZLB does not bind.

5.3 SOURCES OFUNCERTAINTY The impulse responses show uncertainty is time-varying due
to exogenous volatility shocks or first moment shocks thigtract with the state of the economy.
Figure 3adecomposes output growth uncertainty into its exogenod€adogenous sources using
counterfactual simulations conditional on the posterieamparameters of our model. To isolate
the contribution of technology growth uncertainty, we toffithe risk premium volatility shocks.
Similarly, we zero out the technology growth volatility ks to identify the amount of risk pre-
mium uncertainty. We then turn off both volatility shocksdetermine the amount of endogenous
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(a) Decomposition of the exogenous and endogenous souraeseartainty.
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(b) Relative contribution of the exogenous sources of uacHy.

Figure 3: Sources of output growth uncertainty in our basethodel.

uncertainty. We also show the endogenous amplificationeéitogenous volatility shocks when
the Fed was most constrained using the solution to the utreamsd nonlinear model.

On average abo@% of output growth uncertainty is due to the uncertainty thatuws with-
out second moment shocks, which we refer to as endogenoestainty. However, most of the
changesn uncertainty are driven by the exogenous volatility steodBrowth volatility shocks are
the key driver in most periods, but risk premium volatilityogks play an important role in certain
parts of our sample. Typically, endogenous uncertaintgirtyfconstant, but it increases when the
policy rate is near or at its ZLB, which occurs in the mid 20804 from 2009 to the end of the sam-
ple. The sharp increase in uncertainty in 2009, howeveanamily occurred due to the endogenous
amplification of the exogenous volatility shocks, ratharthhrough first moment shocks. The
markers in 2009Q1 show the counterfactual increase in taingr that would have occurred if the
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Fed was not constrained. Those results indicate that abdt ((0.48 — 0.43)/(1.03 — 0.43))
of the increase in uncertainty in 2009Q1 was due to endogenogertainty and abow’%
((1.03 —0.82)/(1.03 — 0.48)) was due to the endogenous amplification of second momeonksho
Despite some nonlinear interactions between the exogewataislity shocks and the ZLB, we
are able to approximate the relative contribution of eadatiity shock over time, similar to a
variance decomposition in a linear model. The dark barsgure 3brepresent the technology
growth counterfactual relative to the endogenous unggytaiounterfactual (circles minus dia-
monds) and the light bars represent the risk premium colacteal relative to the endogenous
uncertainty counterfactual (triangles minus diamondd)ictv is approximately equal to output
growth uncertainty relative to the endogenous uncertaiotnterfactual (solid minus diamonds).
The results reiterate that technology growth uncertaisitypically the biggest contributor to
changes in output growth uncertainty, but the two sourcesofenous uncertainty typically move
together. There are two notable exceptions. One, the moedeiqgbs that risk premium uncertainty
precedes the 2001 recession. Two, technology growth wegrincreases before the rise in risk
premium uncertainty during the Great Recession, but tleetsfof risk premium uncertainty linger
while the impact of technology growth uncertainty is neijglig for a few years after the Great Re-
cession. During the Great Recession, technology growtlriakghremium volatility shocks have
nearly equal roles. By the end of the sample, output growtleriainty declined to its lowest point.

5.4 BULER EQUATION DECOMPOSITION The rest of this section focuses on the effects of un-
certainty and other higher-order momerkigyure 4shows a filtered time series of each term in the
Euler equation decomposition itg) over different forecast horizons. The values on the vaitic
axes are the effects on current output in percentage pairdtamns from the balanced growth path.
The top row shows the decomposition over a 1-quarter horiZbe changes in output are al-
most entirely driven by expectations about output nextiguarhe real interest rate had a smaller
role, typically reducing output by abo0t1%. The peak effect was-0.37% during the Great Re-
cession, but that effect quickly declined as the economgueted. The higher-order terms show
output uncertainty had time-varying adverse effects oneciiroutput. The largest effect occurred
during the Great Recession, since the ZLB constraint magledbnomy more sensitive to adverse
shocks. However, that effect was short-lived because ttienad rate was negative only until 2011.
The effects of uncertainty were small throughout our saniplen during the Great Recession,
the peak increase in uncertainty reduced output by lessitbafs. Output skewness and both in-
flation uncertainty and inflation skewness also had very lsgfi@gcts. Interestingly, the effects of
uncertainty over d-quarter horizon were similar to the impact effects of thegenous volatility
shocks shown ifigure 2 However, the results understate the effects of unceytdietause they
hide the impact that future real interest rates and highéderanoments have on expected output.
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RICHTER & THROCKMORTON: A NEW WAY TO QUANTIFY THE EFFECT OFUNCERTAINTY
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Figure 4: Filtered decomposition of the effects on curraripat. The shaded regions denote NBER recessions. The
values on the vertical axes are the contributions to thegpéage point deviation of detrended output from steadg stat
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The middle left panel shows how expected output affecteskatioutput over horizons up fa
guarters. In most periods, the differences between cuamhtexpected output were much larger
over horizons beyontquarter, which indicates that other factors, such as tamterest rate and
uncertainty, explained a larger fraction of the changesiiput. We focus on a4-quarter horizon
because it is long enough that expected output barely mdtiecurrent output. For example, in
20090Q2 (the last quarter of the Great Recession) expectpdton 2009Q3 explainedt.3% of the
decline in current output, whereas expected output in 2@1&@lained onlyi.6% of the decline.
Over those same horizons, the contribution of output uag#stincreased frord.9% to 11.9%.

The middle right panel shows the effect of output unceryaover the horizons shown in the
left panel, but the values on the vertical axis are cumutaifects. Although the effect of output
uncertainty is small when it is conditional on expected attprer al-quarter horizon, it is more
significant over longer horizons that decompose the infleerieexpected future output. Over a
24-quarter horizon, output uncertainty on average decreaseednt output by abowt06% and the
largest effect was abo0t15% in 2009Q1, which accounted f@6.6% of the decline in that quarter.

The other higher order moments are shown in the bottom lelpduring the Great Reces-
sion, the peak effects of technology growth uncertainf{aiion uncertainty, and output skewness
over a24-quarter horizon were-0.023%, —0.005%, and—0.001%, respectively, and the average
effects were much smaller. We do not show the effect of imftaikewness because it is always
near zero. It is not surprising that inflation uncertaintg akewness had small effects because the
Fed aggressively targeted inflation throughout our samgtevever, we expected a larger effect
of output skewness, especially during the Great RecesSioa.ZLB creates downside risk since
it prevents the Fed from responding to adverse shocks throagventional channels. Evidently,
those effects are small when controlling for other momenhi® covariance between inflation and
output on average lowered output ©92%, the second largest effect behind output uncertainty.

The bottom right panel shows the effect of output uncenyaoner a24-quarter horizon along
with two of the counterfactuals shown figure 3a First, we plot the effect of output uncertainty
after removing the influence of the ZLB using the solutionite tinconstrained nonlinear model.
The differences from the baseline path show how much the ZicBeased the adverse effects of
uncertainty. In most quarters, the differences are smahliige there is a low probability of going
to and staying at the ZLB. Larger differences between thepaibis occurred from 2008Q4 to
2009Q4, when the notional interest rate was well below zZéon.example, in 2009Q1 output un-
certainty reduced output by abdu06 percentage points more than if the Fed was not constrained.

Second, we restore the ZLB constraint but zero out both exaggevolatility shocks. Since
first moment shocks are the main source of most of the unogytai the economy, they are also
the primary source of the adverse effects of output unceytat its peak, endogenous uncertainty
only increased the adverse effects of output uncertaingidmut0.01 percentage points, whereas
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exogenous volatility shocks played a much larger role dyittire last two recessions. For example,
the volatility shocks without the ZLB contributed abau64 percentage points to the decline in
output growth in 2009Q1 and their amplification contribuéedadditional.06 percentage points.
The bottom right panel also plots the total effect of ungetya—the sum of output, technology
growth, and inflation uncertainty—overd-quarter horizon. On average, the three sources of un-
certainty lowered output b§.07 percentage points with a peak decliné)adf7 percentage points.

0 Output Uncertainty (24Q Horizon) 0 Growth/Inflation Uncertainty (24Q Horizon)
-0.05
-0.01¢
-0.1
-0.02r
-0.15¢
-0.03r
-0.2 . .
Inflation Uncertainty
——o—— Growth Uncertainty
-0.25 : -0.04 :

1986 1990 1994 1998 2002 2006 2010 2014 1986 1990 1994 1998 2002 2006 2010 2014

Figure 5:68% credible sets of the filtered effects on current output. Tértieal bars denote NBER recessions. The
values on the vertical axes are the contributions to thegoéage point deviation of detrended output from steadg stat

The results iffigure 4are based on the posterior mean. However, we can generasdiies
for every draw from the posterior distributioRigure 5shows thel standard deviationl(%-84%)
credible sets for the effects of each type uncertainty o&&-gquarter horizon. In a typical quarter,
the effect of output uncertainty ranges frem.01% to +0.015% of the median effect. The effects,
however, are more asymmetric during recessions. For exampting the peak of the Great Re-
cession there was@% chance output uncertainty decreased current output bystiolé 2% and
it could have decreased it by as muctba$%. The effects of technology growth and inflation un-
certainty are always much smaller than output uncertagvin in the tail of the parameter distribu-
tion. In all three cases, the credible sets are much tightéerthe range of estimates in the literature.

5.5 KeY PARAMETERS We determine the relative importance of each parameterdoEaler
equation decomposition by conducting posterior predécéimalysis with the draws from the pos-
terior distribution{6;}19%°. We focus on the effect of output uncertainty ovériaquarter horizon,

h0,t) = —(7/2) 234:1 vary(§er;10, &, ),

wherez; andz; are the median filtered states and shocks conditional ona$tepor mean param-
eters. Fixing the states and shocks isolates the role offeimeter. We calculated;, t) for all i
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to generate the credible setsfigure 5 which capture the effects of output uncertainty given each
posterior draw. Definém as theith posterior draw conditional on the posterior mean of patam

¢. As a counterfactual, we first calculdté@-,g, t) using the procedure described at the endeaf-
tion 4. We then calculate the root-mean square-deviation (RM&i the counterfactual given by

RMSD((,t) =/ 1555 S P (05, t) — h(Bie. 1))

Figure 6plots time series of the RMSD for the nine most consequepasameters in the
model. A high RMSD for parametér means the effect of output uncertainty on current output
is sensitive to that parameter. The risk premium persisténg and shock standard deviation
(o5) have the largest average RMSDs. Of the deep parameterspdiicient of relative risk
aversion §) and the monetary response to inflatign  are the most important parameters. There
is also considerable variation in the importance of therpatars across time. For example, during
recessions the RMSD of each parameter increases, but tbesgrparameters (right panel) become
relatively more important than the deep parameters. Caitgidessions, the deep parameters (left
panel) are relatively more important, though the averagé&SRMf each parameter is much lower.

Root-Mean Square-Deviation Root-Mean Square-Deviation
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1990
Figure 6: Time series of the root-mean square-deviatioh@gffect of output uncertainty over2d-quarter horizon
(i.e., the effect on current output at the posterior drawusitihe effect after fixing a parameter at its posterior mean).

The RMSD statistic summarizes the importance of a givenrpatar in every quarter of our
sample, but it does not show whether that parameter ingeaskecreases the effect of uncertainty.
By conditioning on a particular quarter, we can determirgestign.Figure 7shows scatter plots of
the deviationA, ,; = h(éi, t) — h(0;,t), for all posterior draws, conditional on parametend
t = 2008Q4. In other words, it shows the changes in the effect of outpieettainty that occur
when a given parameter deviates from its posterior mean. gkipe (negative) value of\; ,,
means output uncertainty has a smaller (larger) adversetefh current output for a given draw.
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Figure 7: Scatter plots of the effect of output uncertaintygorrent output over 24-quarter horizon in 2008Q4 at each
posterior draw, conditional on fixing a parameter at its @ast mean. The values on the vertical axes are deviations
from the effect with the posterior mean parameters. Thezbotal axes denote the parameter values corresponding to
the number of standard deviations away from the posteri@m&he dashed vertical lines are the posterior means.

The results depend on how each parameter affects expedtdiityo The diagonal line is the
linear trend. When the parameters governing the risk prengiy, p.., 7, ando,,) are above their
posterior means (vertical line) output uncertainty hasgelaadverse effect because the variance
of the exogenous process and hence expected volatilitgaser For example, the posterior mean
persistence of the risk premium,, is 0.911. When that value is two standard deviations higher
(0.932), output uncertainty reduces output byl3 percentage points more than at its posterior
mean. A higher price adjustment cost parameter also caug@stancertainty to have a larger ef-
fect because stickier prices make households more senitthanges in the nominal interest rate.

Larger values of the other parameters reduce the effecttptibuncertainty on output. An in-
crease in the coefficient of relative risk aversion makeshbalds less willing to substitute across
time, which makes output less volatile. Thus, output urzcety has a smaller adverse effect, even
though households react more strongly to expected vdyatllihigher monetary response to infla-
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tion has a similar effect because it also reduces expectatefuolatility. Interest rate smoothing
is a form of commitment by the Fed to reduce future inflatiokatiity, so the higher persistence
reduces expected volatility. Finally, a higher averagemjnarate raises the steady-state nominal
interest rate, which decreases the likelihood of ZLB evantstherefore expected future volatility.
These results are particularly useful given the degree mafrpater uncertainty in the literature.
By extrapolating from the trend line, it is easy to obtain agio estimate for the effects of output
uncertainty and the likelihood of that outcome given anyapaeterization of the model. It is also
possible to conduct a similar exercise for the other momieritee Euler equation decomposition.

5.6 WELFARE The cost of business cycles literature provides an altematy to quantify the
effects of uncertainty than our Euler equation decompmsifi hat literature uses welfare analysis
to determine the consequences of different levels of \ati he main difference between the two
methods is that our Euler equation decomposition quantifiesffects of different higher order
moments—including uncertainty—withinparticular model, whereas the welfare analysis quanti-
fies the effects of volatility by comparindjfferentmodels. Specifically, the cost of business cycles
literature measures the compensating variation of switcfrom a low to a high volatility model.
Given the household’s constant relative risk aversioftyfiinction in our baseline model, the
compensating variation between modeldower volatility) andH (higher volatility) is given by

_ Eth(EH) +1/(1=9)(1-=7p)) - Eth(nH) + Eth(nL) 1/(1=7)

EW(¢5) +1/((1—7)(1 - B)) . @n

EW.(&") = B[Y32, #/7((&)' = = 1)/(1 = ]IS,
EW,(n”) = E[3352, 87~ De(nd) 7/ (1 + )] ),

are the expected present-value of the household’s utildgnfconsumption and disutility from
labor conditional on its information set at time(),, which contains the median filtered state and
the posterior mean parameters. Algbandn? are the optimal choices of detrended consumption
and labor conditional on modele {H, L}. We denote the higher (lower) volatility economy with
an H (L), where the expected path of consumption is lower (highee)td precautionary saving.
We approximatél, andW,, by integrating acros$,000 simulations ofl0,000 quarters. Each
simulation is conditional on the state of the economy in ai@aar period and the posterior mean
parameters); is the fraction of consumption goods in the low volatilityoeomy that would com-
pensate the household for the lower consumption path iniglehvolatility economy. When, >
0 the household is better off in the lower volatility economppendix Fshows how to derive,.
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Figure 8: Percent of consumption goods under lower vaiatiéeded to compensate the household for higher volatil-
ity. In each period, the welfare cost is conditional on theliae filtered state from the posterior mean parameterizatio

Figure 8shows four estimated compensating variations: the effeatlshocks (models (1)
and (4), x markers); the effect of only the stochastic vbtgtshocks (models (1) and (3), circles
markers); the effect of only the first-moment shocks (mod@Jsand (4), triangle markers); and
the effect of only the ZLB constraint (models (1) and (2),ndcand markers). The compensating
variation is shown as the percent of consumption goods itother volatility or no ZLB models.

In the baseline model, the household requires compensatainout0.03% in every period to
be indifferent to a world in which there is no volatility (i,eéhe constant path of consumption and
labor in the deterministic steady state), similar to theigah Lucas (1987) with = 2. There is
a small increase in the welfare cost during recessions. ssdtte sample, abo@t% of the com-
pensation stems from the volatility induced by the first-neotrshocks to productivity growth, the
risk premium, and the interest rate. The remainder is dubdsé&cond-moment shocks and the
endogenous amplification of both first- and second-momedkshby the ZLB. Compensation for
the uncertainty coming from second-moment shocks to ptodiyogrowth and the risk premium
is higher than the compensation required for the endogeunnasrtainty induced by the ZLB.
Also, the higher welfare cost at the end of the Great Recessimes mostly from the interaction
of second-moment shocks with the ZLB rather than first-mdralkacks interacting with the ZLB.

6 THE EFFECT OFCAPITAL ACCUMULATION

In our baseline model without capital, output is equal toszomption and the only way households
can save is by investing in Bperiod nominal bond, which is in zero net supply. This smtti
extends the model so households can also invest in capittleldata, investment is more volatile
than real GDP, especially during recessions, so it is ingpoto add capital to the model since it
allows output, consumption, and investment to have diffefgotentially time-varying, volatilities.
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The final goods firm’s problem is unchanged. Intermediate fipmoduces goods according to
v (1) = ki1 (1)*(zme (1)) 7. It chooses its capital and labor inputs(:) andk;_ (i), and its price,
p:(4), to maximize its profit function. In symmetric equilibriutie optimality conditions imply

il = (ke-1/ge)ny ™, (18)
adyng = (1= a)rf(ki1/g1), (19)
me, =, (rf)* /(1 — @) ™), (20)

and the Phillips curve 5, which is identical except for the change in the marginak cfinition.
The household choosgs;, n;, b;, x, k: } 2, to maximize the same utility function subject to

¢+ xp + by /(1) = wng + Tfkt—l + by /7 + dy,
ke =(1—0)ki1 + x(1 — pu(af — 1)2/2),

wherez is investment in physical capitatl; = x,/(gx;_1) is the growth rate of investment relative
to the balanced growth rate, > 0 scales the size of the cost to adjusting investmentjasdhe
capital stock, which earns a real retufrand depreciates at rafeln addition to the first-order con-
ditions in the model without capital@f and @), there are two new optimality conditions given by

q = 5Et[(5t/5t+1)7(7"f+1 + q1(1 = 6))/ gesl, (21)
1= Qt[l - %c(jtg - 1)2 - Sﬁzfg(itg - 1)] + ﬁ%cgEt[th(5t/5t+1)’7(jt9+1)2(jf+1 - 1)/9t+1]- (22)

The detrended law of motion for capital and the aggregataures constraint are given by

ke = (1= 0)(ki1/g1) + B0(1 — a7 — 1)%/2), (23)
Ct + Tt = Yt (24)

Once again, we redefined variables that grow along the badaguowth path in terms of technol-
ogy. A competitive equilibrium includes infinite sequenoésjuantities{¢;, 7, gtf, Ny, T, l%t};’io,
prices, {wy, i, i, 7)Y, mey, qi, ¥ 152, and exogenous variable§s:, g;, 0,4, 054 }5%,, that satisfy
the detrended equilibrium systert),((2), (5)-(11), (13), and (L8)-(24), given the initial conditions,
{e—1,d%, 221, k_1, 9o, 50, €i,0, 04,0, 050}, and sequences of ShocKs, ;, e, €it, €y ts €t 121

The model is numerically too costly to estimate, so we catidbthe three new parameters. The
capital depreciation rate, is calibrated td.025. The cost share of capital, and the invest-
ment adjustment cost parametey, are set td).19 and4.06, respectively, which equal the mean
posterior estimates in Gust et al. (2017). Although theeesame differences between our model
and the one in Gust et al. (2017) (e.g., their model inclutiekyswages and variable capital uti-
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lization, whereas our model has stochastic volatility) beéeve these parameter values provide a
good approximation of what we would obtain if we estimateslitiodel with Bayesian methods.

Fortunately, introducing capital does not change the ampsion Euler equation we used to
construct the decomposition in the model without capitaé §&nerate policy functions for each
term in the decomposition in the same way as the model wittapital, except we filter the data
with per capita real fixed investment growth in addition te tive observables we previously used.

Figure 9shows the influence of the different types of uncertainty.e Téft panel plots the
effects of consumption uncertainty over a 24-quarter loorin the models with and without cap-
ital. In the capital model, consumption uncertainty on agerdecreases current consumption by
0.08%, which is only0.02 percentage points more than in our baseline model withqitataThe
difference is more pronounced when the ZLB first binds. In8@8 consumption uncertainty low-
ered consumption by.22% compared with only).14% in the baseline model, but that discrepancy
quickly dissipated. Furthermore, the median effect in thgital model is typically in the left tail
of the credible set implied by the baseline model. The rigingd shows the impact of technology
growth and inflation uncertainty in the model with capitakretwo other types of uncertainty in
the bond Euler equation. Both terms have nearly identi¢attf to those in the baseline model.

A major benefit of the capital model is that it provides a nedeEaquation, 21), that we can
use to quantify the effects of the uncertainty about the mexatial rate of capital and Tobinison
current consumption. Using the methodserction 4.3a third-order Taylor approximation implies

Ve = VB — ((8/9)T Eiifer + (8/9)(1 = 0) EyGess — G — Eigera)
— %(72 var, ér41 + var, i 4 (8/9)7 var f’fﬂ + (B/g9)(1 =) var; ¢s+1)
— v covi(Ceit, Grar) + Y(B/3)F* covi(Cein, Pry) +7(8/3)(1 = 0) cove(Cer, Givr)  (25)
+ (8/9)7* covi(Gr, Py) + B((1 = 6)/7) covi(Gesr, Gr)
+ §(7 skew, &1 + skew, g1 — (8/9)7" skew, 7, — B((1 = 0)/g) skew Gey1),

which we can once again iterate forward to eliminate the eénfbe of expected future consumption.
Several terms enter the same way as our previous decongpo$itir example, thex-antevariance
of consumption and technology growth appearlif) @nd 5), so they have the exact same effect
on consumption. The rental rate and Tobipigriance terms replace the inflation variance term.
The right panel also plots the new uncertainty terms overqutter horizon. Rental rate un-
certainty has a similarly small effect as inflation uncertyai Unlike the other higher-order terms,
uncertainty about Tobin’g has almost half as large of an effect on consumption as coptsum
uncertainty, which shows the importance of capital adjestincosts for the transmission of uncer-
tainty. Overall, uncertainty about the return on capitah(al rate and Tobin’g) has a larger influ-
ence on consumption than uncertainty about the real retuarisk-free nominal bond (inflation).
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Figure 9: Filtered decomposition of the effects on curremszimption. The shaded regions denote NBER recessions.
The vertical axes are the contribution to the percentag# pleviation of detrended consumption from its steady state

7 COMPARISON WITH THETRADITIONAL VAR APPROACH

The literature often adds a measure of uncertainty to tHablass in a structural VAR and computes
impulse responses using a recursive identification scHefiitee responses depend on where un-
certainty is ordered in the list of variables. If uncertgiistordered first, then subsequent variables
in the VAR, which reflect information about the state of thermamy, have no contemporaneous
effect on the responses to an uncertainty shock. If it isrediéast, then none of the preceding
variables in the VAR contemporaneously depend on unceéytaio an uncertainty shock has no ef-
fect on impact. Therefore, the modeler must specify whdtieetuncertainty series is exogenous or
endogenous. The challenges are even greater when acaptortiultiple sources of uncertainty.
Due to the nonlinearities introduced by stochastic votatiind the ZLB constraint, we are in-
terested in whetherlamear VAR, commonly employed in the literature on uncertainty) cacover
the dynamic relationship between uncertainty and realicpredicted by our baselingonlinear
model. We focus on the impulse response of output growth twaage in financial uncertainty,
Usy =/ Ei[0?,,,]. Since financial uncertainty is exogenous in our structmadel, it is easy for
us to compare its effects to those in a VAR model and assessamyc The shocks in the VAR
are identified recursively and the variables—financial utadety, output growth, inflation, wage
growth, the risk premium, and the interest rate—are ordémed first to last in the same way as
Christiano et al. (2005) Appendix Eprovides additional information about our structural VAR.

4Alexopoulos and Cohen (2009) develop a proxy based on thdeuaiNew York Timearticles on uncertainty.
Bachmann et al. (2013) use forecaster disagreement froBubi@ess Outlook Survey. Leduc and Liu (2016) create
a measure based on respondents from Michigan Survey of @mmswho report uncertainty as a reason why it is a
bad time to purchase vehicles. Basu and Bundick (2017),&8¢ekaal. (2013), and Bloom (2009) use the VIX. The
effect of an increase in these proxies varies widely, ragnfiom close td% to over1%, depending on the shock size.

SWe obtain very similar results using bivariate VARs with artainty ordered first and output growth second.

26



Baseline Model Simulated VAR (No ZLB Events)  Simulated VAR (" < —0.4%)
0.025 ' ' ' ' 0.1 ' ' ' ' 0.1 ' ' ' '

RESSRS
0 b1 T 0 0
-0.025 I P
. i 0.1 -0.1
-0.05 /i
i — i} = 1.2% (Steady State) '02 _02
-0.075) | . T T - anewme
| ¢ = —1.5% (Alt tive) -03 -0.3
-0.1

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
0 lSimulated VAR (i" < —1.5%) 0 i&ctual VAR (1986Q1-2007Q4) 0 lActual VAR (1986Q1-2016Q2)

o//— 0 R 0
0.1 0.1 -0.1/\_/

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Figure 10: Impulse responses of output growth to a 2 standiewrtion increase in financial uncertainty. The solid
lines are the median responses and the shaded regions tleb&tandard deviationl(%-84%) credible sets.

Figure 10shows the responses to a 2 standard deviation financialtamtgrshock. The first
subplot shows the predictions of our baseline model givéierént initializations of the state.
When the response is initialized at the stochastic steadyg g$olid line), where the notional in-
terest rate;”, is 1.2%, the effect of financial uncertainty on output growth is ngiple across the
whole horizon. However, when the response is initializethatmedian filtered state correspond-
ing to 2009Q2 (dashed line), wheie = —0.4% initially, output growth declines bg.07%. We
alternatively initialize the response at an average s&teov across simulated quarters at the ZLB
such that™ = —1.5% initially (dashed-dotted line). In that case, the financiatertainty shock
leads to &.1% decrease in output growth on impact. In summary, our basetiodel predicts the
impact effect of financial uncertainty on output growth degeon the initial state of the economy.

The simulated VARSs in the next three subplots are estimatt#ddata from short-sample sim-
ulations of the baseline model conditional on the posteniean parameterization. The solid lines
represent the median response and the shaded regionsergptesl 6%-84% credible sets. The
first simulated VAR is estimated using artificial data withany ZLB events (i.e4™ > 0 always).
The response of output growth to a financial uncertainty sli®close to zero across the whole
horizon, which is very similar to the prediction of our baselmodel initialized at steady state.

The next two simulated VARs are estimated with artificiabdahere the notional rate falls be-
low —0.4% or —1.5% for at least one quarter, so the responses represent aser@gss quarters
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when the ZLB does and does not bind. Given these initialsté#te median impact effects of finan-
cial uncertainty on output growth are0.06% and—0.10%, respectively. Although the responses
are not significantly different from zero, the median impaictinancial uncertainty shocks iden-
tified by the VAR decreases as the quantity and severity of Zu&nts increase in the simulated
data and it is quantitatively similar to our structural mbd#erefore, thdinear VAR does a good
job capturing the endogenous amplification of exogenousadiahuncertainty shocks at the ZLB.
Finally, we estimate the same VAR with U.S. data. The secondst subplot excludes the
Great Recession and subsequent ZLB period (1986Q1-200WQ#¢ the last subplot is based on
the sample used to estimate our baseline model (1986Q1¥)14 he results are similar to the
predictions of our structural model. The effect of uncertyais small and statistically insignificant
in the pre-ZLB period, whereas it is much larger and signifieghen the ZLB period is included.
Interestingly, the structural VAR estimates based on Ud$a dre also very similar to the ef-
fects of output uncertainty from our Euler equation decosipan ® Given the stark differences in
methodology, the similarity between the two sets of resslt®teworthy. They provide strong evi-
dence that aggregate uncertainty has limited effects oedbeomy, even when the the ZLB binds.
A major advantage of our Euler equation decomposition isitltlbes not require us to take a
stand on whether a given type of uncertainty is endogenoagagenous. It can also account for
multiple forms of uncertainty and how they nonlinearly naiet with the economy. In other words,
our decomposition is able to quantify the overall effectlbfygoes of uncertainty in each period by
accounting for the first and second moment shocks that bpkiexnacro and uncertainty data. It
also has the added advantage of being able to quantify teetefbf other higher-order moments.

8 CONCLUSION

The literature often uses exogenous volatility shocks tmere the effects of aggregate uncer-
tainty. We develop a new way to quantify the effects of uraiaty that accounts for both exoge-
nous and endogenous uncertainty sources. We first estinradalmear New Keynesian model
with a ZLB constraint and stochastic volatility, while limg to both macro and uncertainty data.
We then decompose output into its expected mean, variandesk@wness with the consumption
Euler equation. Our decomposition reveals that uncestdiatl a relatively small impact. Despite
the nonlinearities in the model, output uncertainty needuced output by more thar22%, even
during the Great Recession, and other higher-order morhedtshnuch smaller effects on output.
A major benefit of our method is its flexibility to examine thHéeets of uncertainty in a broad
class of models. While some models are too costly to estintatepossible to calculate the ex-
pected volatility or skewness surrounding any endogenatiaiMe in the model. After calibrating

6\We obtain very similar results if we use the macro unceryamdex instead of the financial uncertainty index.
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the model, one could then filter the data while linking to arpgioal measure of any higher-order
moment. Using our results as a benchmark, future reseatttt eeamine other sources of endoge-
nous uncertainty, such as borrowing constraints, firm defiamited information, irreversible in-
vestment, search frictions, or heterogeneity to examingthdr uncertainty has significantly larger
effects. Alternative models may endogenously explain gelafraction of the changes in uncer-
tainty and the effects of uncertainty may become larger mesperiods. However, our results sug-
gest the peak effects of uncertainty may not significanttygase in other models, given that uncer-
tainty had limited effects in our model despite the significaonlinearity that occurs at the ZLB.

REFERENCES

ALEXOPOULOS M. AND J. COHEN (2009): “Uncertain Times, Uncertain Measures,” Universit
of Toronto Working Paper 352.

AN, S.AND F. SCHORFHEIDE (2007): “Bayesian Analysis of DSGE Model&tonometric Re-
views 26, 113-172.

ARELLANO, C., Y. Bal, AND P. J. KEHOE (2016): “Financial Frictions and Fluctuations in
\olatility,” NBER Working Paper 22990.

BACHMANN, R., S. ESTNER, AND E. SMs (2013): “Uncertainty and Economic Activity: Evi-
dence from Business Survey DatAjherican Economic Journal: Macroeconomibs217—49.

BAsu, S.AND B. BunDIcK (2015): “Endogenous Volatility at the Zero Lower Bound: liop-
tions for Stabilization Policy,” FRB Kansas City Workingpg&a 15-1.

(2017): “Uncertainty Shocks in a Model of Effective Dent’ Econometrica85, 937—

958.
BEKAERT, G., M. HOEROVA, AND M. Lo Duca (2013): “Risk, Uncertainty and Monetary

Policy,” Journal of Monetary Economi¢c60, 771-788.

BERNDT, A., H. LUSTIG, AND SEVIN YELTEKIN (2012): “How Does the US Government Fi-
nance Fiscal ShocksZmerican Economic Journal: Macroeconomids69—104.

BLoowm, N. (2009): “The Impact of Uncertainty Shock&tonometrica77, 623—-685.

BORN, B. AND J. FFEIFER (2014): “Policy Risk and the Business Cycldgurnal of Monetary
Economics68, 68—-85.

BRUNNERMEIER, M. K. AND Y. SANNIKOV (2014): “A Macroeconomic Model with a Financial
Sector,”American Economic Review04, 379-421.

CHRISTIANO, L. J., M. ECHENBAUM, AND C. L. EvANS (2005): “Nominal Rigidities and the
Dynamic Effects of a Shock to Monetary Policygurnal of Political Economy113, 1-45.

CHUNG, H. AND E. M. LEEPER(2007): “What Has Financed Government Debt?” NBER Work-
ing Paper 13425.

COLEMAN, II, W. J. (1991): “Equilibrium in a Production Economy wigéim Income Tax,Econo-
metricg 59, 1091-1104.

29



DE GROOT, O., A. RCHTER, AND N. THROCKMORTON (2018): “Uncertainty Shocks in a Model
of Effective Demand: CommentZconometricaforthcoming.

FAJGELBAUM, P., M. TASCHEREAU-DUMOUCHEL, AND E. SCHAAL (2017): “Uncertainty
Traps,”The Quarterly Journal of Economic$32, 1641-1692.

FERNANDEZ-VILLAVERDE, J., P. WERRON-QUINTANA, K. KUESTER AND J. F. RiBIO-
RAMIREZ (2015): “Fiscal Volatility Shocks and Economic ActivityXmerican Economic Re-
view, 105, 3352-84.

FERNANDEZ-VILLAVERDE, J., P. QERRON-QUINTANA, J. F. RUBIO-RAMIREZ, AND
M. URIBE (2011): “Risk Matters: The Real Effects of Volatility ShackAmerican Economic
Review 101, 2530-61.

FERNANDEZ-VILLAVERDE, J.AND J. F. RUBIO-RAMIREZ (2007): “Estimating Macroeconomic
Models: A Likelihood Approach,Review of Economic Studie&t, 1059-1087.

GORDON, N. J., D. J. S3LMOND, AND A. F. M. SMITH (1993): “Novel Approach to
Nonlinear/Non-Gaussian Bayesian State EstimatitiE? Proceedings F - Radar and Signal
Processing140, 107-113.

GOURIO, F. (2014): “Financial Distress and Endogenous UncegtdiManuscript, Federal Re-
serve Bank of Chicago.

GUERRON-QUINTANA, P. A. AND J. M. NASON (2013): “Bayesian Estimation of DSGE Mod-
els,” in Handbook of Research Methods and Applications in Empifi¢éatroeconomicskd-
ward Elgar Publishing, chap. 21, 486-512.

GusT, C., E. HERBST, D. LOPEZSALIDO, AND M. E. SMITH (2017): “The Empirical Implica-
tions of the Interest-Rate Lower Boundyinerican Economic Review07, 1971-2006.

HALL, G. J.AND T. J. SARGENT (2011): “Interest Rate Risk and Other Determinants of Post-
WWII US Government Debt/GDP Dynamic#merican Economic Journal: Macroeconomics
3,192-214.

HE, Z. AND A. KRISHNAMURTHY (2014): “A Macroeconomic Framework for Quantifying Sys-
temic Risk,” NBER Working Paper 19885.

HERBST, E. P.AND F. SCHORFHEIDE (2016): Bayesian Estimation of DSGE ModgRrinceton,
NJ: Princeton University Press.

ILuUT, C. L.AND H. SA130 (2016): “Learning, Confidence, and Business Cycles,” NBERivig
Paper 22958.

JURADO, K., S. C. LUDVIGSON, AND S. NG (2015): “Measuring UncertaintyAmerican Eco-
nomic Reviewl105, 1177-1216.

KiTaAGAWA, G. (1996): “Monte Carlo Filter and Smoother for Non-GaassNonlinear State
Space ModelsJournal of Computational and Graphical Statisti&s pp. 1-25.

KoPECKY, K. AND R. SUEN (2010): “Finite State Markov-chain Approximations to Higler-
sistent ProcessefReview of Economic Dynamick3, 701-714.

30



LEDUC, S.AND Z. LIu (2016): “Uncertainty Shocks are Aggregate Demand Shodksifnal of
Monetary Economi¢s$82, 20-35.

LESTER R., M. RRIES, AND E. SMs (2014): “Volatility and Welfare,”Journal of Economic
Dynamics and ControB38, 17—36.

LucAs, Jr, R. E. (1987):Models of Business CycleSxford: Basil Blackwell.

LUDVIGSON, S. C., S. My, AND S. NG (2017): “Uncertainty and Business Cycles: Exogenous
Impulse or Endogenous Response?” NBER Working Paper 21803.

MASON, J. W. AND A. JAYADEV (2014): ““Fisher Dynamics” in US Household Debt, 1929-
2011, American Economic Journal: Macroeconomifs214—-234.

MENDOZzA, E. G. (2010): “Sudden Stops, Financial Crises, and Leegi#gnerican Economic
Review 100, 1941-1966.

MUMTAZ, H. AND F. ZANETTI (2013): “The Impact of the Volatility of Monetary Policy Sbks,”
Journal of Money, Credit and Banking5, 535-558.

NAKATA, T. (2017): “Uncertainty at the Zero Lower Bound®merican Economic Journal:
Macroeconomics9, 186-221.

NAVARRO, G. (2014): “Financial Crises and Endogenous VolatiliAnuscript, New York Uni-
versity.

OTROK, C. (2001): “On Measuring the Welfare Cost of Business Gtldournal of Monetary
Economics47, 61-92.

PARKER, J. A.AND B. PRESTON(2005): “Precautionary Saving and Consumption Fluctunetio
American Economic Revie®5, 1119-1143.

PETERMAN, W. B. (2016): “Reconciling Micro and Macro Estimates of #rgsch Labor Supply
Elasticity,” Economic Inquiry54, 100-120.

PLANTE, M., A. W. RICHTER, AND N. A. THROCKMORTON (2018): “The Zero Lower Bound
and Endogenous Uncertaint{eonomic Journalforthcoming.

RICHTER, A. W., N. A. THROCKMORTON, AND T. B. WALKER (2014): “Accuracy, Speed and
Robustness of Policy Function Iteratio@bmputational Economicg4, 445-476.

ROTEMBERG, J. J. (1982): “Sticky Prices in the United Statekurnal of Political Economy90,
1187-1211.

ROUWENHORST K. G. (1995): “Asset Pricing Implications of EquilibriumuBiness Cycle Mod-
els,” in Frontiers of Business Cycle Resear@dd. by T. F. Cooley, Princeton, NJ: Princeton
University Press, 294-330.

SAIJ0, H. (2017): “The Uncertainty Multiplier and Business CygfeJournal of Economic Dy-
namics and Contrgl78, 1-25.

Sims, C. A. (2002): “Solving Linear Rational Expectations MaoslglComputational Economics
20, 1-20.

SMETS, F. AND R. WOUTERS(2007): “Shocks and Frictions in US Business Cycles: A Bayes
DSGE Approach,American Economic Revie®7, 586—606.

31



STEWART, L. AND P. MCCARTY, JR (1992): “Use of Bayesian Belief Networks to Fuse Con-
tinuous and Discrete Information for Target Recognitioracking, and Situation Assessment,”
Proc. SPIE 1699, 177-185.

STRAUB, L. AND R. ULBRICHT (2015): “Endogenous Uncertainty and Credit Crunches,”
Toulouse School of Economics Working Paper 15-604.

TALLARINI, JR., T. D. (2000): “Risk-Sensitive Real Business Cyclealrnal of Monetary Eco-
nomics 45, 507-532.

TAYLOR, J. B. (1993): “Discretion Versus Policy Rules in Practic@arnegie-Rochester Confer-
ence Series on Public Polic$9, 195-214.

VAN NIEUWERBURGH, S.AND L. VELDKAMP (2006): “Learning Asymmetries in Real Business
Cycles,”Journal of Monetary Economi¢83, 753—772.

Xu, S. (2017): “Volatility Risk and Economic WelfareJournal of Economic Dynamics and
Control, 80, 17-33.

A DATA SOURCES
We drew from the following data sources to estimate our Neyniesian and VAR models:
1. Financial Uncertainty index: Monthly. Source: Ludvigson et al. (20174),= 3 (1-quarter
forecast horizon). Data available framt p: / / ww. sydneyl udvi gson. coni .

2. Macro Uncertainty Index: Monthly. Source: Jurado et al. (201%)= 3 (1-quarter forecast
horizon). Data available fromt t p: / / ww. sydneyl udvi gson. cont .

3. Real GDP. Quarterly, chained 2009 dollars, seasonally adjustedirc®o Bureau of Eco-
nomic Analysis, National Income and Product Accounts, &dbl.6 (FRED ID: GDPC1).

4. GDP Deflator: Quarterly, seasonally adjusted, index 2009=100. SouBteeau of Eco-
nomic Analysis, National Income and Product Accounts, &db1.9 (FRED ID: GDPDEF).

5. Average Hourly Earnings: Monthly, production and nonsupervisory employees, dsiteer
hour, seasonally adjusted. Source: Bureau of Labor S&sti$tRED ID: AHETPI).

6. Interest Rate Spread (Risk Premium) Monthly, Moody’s seasoned Baa corporate bond
yield relative to the yield on 10-Year treasury bond. SourBeard of Governors of the
Federal Reserve System, Selected Interest Rates, H.1TD(HRBAA10YM)

7. Effective Federal Funds Rate:Daily. Source: Board of Governors of the Federal Reserve
System, Selected Interest Rates, H.15 (FRED ID: FEDFUNDS).

8. Civilian Noninstitutional Population : Monthly. Source: U.S. Bureau of Labour Statistics,
Current Population Survey (FRED ID: CNP160V).
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9. Fixed Investment Quarterly, billions of dollars, seasonally adjusted. ®eu Bureau of
Economic Analysis, National Income and Product Accourab|d 1.1.5 (FRED ID: FPI).

We applied the following transformations to the above serie

10. Per Capita Real GDP. 1,000,000 x Real GDF Population.
11. Real Wage 100xAverage Hourly Earning$rice Index.

12. Real Investment Average FPI in 2009 (FPI Quantity Index100). Quantity Index FRED
ID: AOO7RA3QO086SBEA.

13. Per Capita Real Investment 1,000,000 x Real InvestmeniPopulation.

We converted the monthly or daily time series to a quartedgdency by applying time averages
over each quarter. In order, the variables used to estinaféAR model are series 1, 10, 4, 11, 6,
and 7. The observables used to estimate our nonlinear maithelut/capital include series 10, 4,
7,1, and 2. When we filter the data using the model with capitaladd series 13 as an observable.

B EULER EQUATION DECOMPOSITION

The bond Euler equation is given by
1= BE[(9e/Ue+1)" (se2e/ (gea1mer1))] = Eilexp(ie + St — T — Ge1 + (G — Jer1))]s
where a hat denotes log deviation from the balanced grovith pdter reorganizing, we obtain

— (% + 8¢ +y9) = log( E
=log( E

tlexp(=7ri1 — G — Y0e41)])
(1 — (g1 + Ge1 + VYes1) + %(ﬁtﬂ + Giv1 + V1)’ —
(et + Grar + V0e1)° + -+ ])

[

= log (1 — (Bi[ftes1] + Ee[Gean] + v Ee[Ge])+
L(BlA2 )+ Blgd) + P Bilid)+
28, [Tt 1Gia1) + 2V E [Gra1Tes1] + 27 E, [ﬁt+1?)t+1]) —
%(Et[ﬁfﬂ] + Eg7 ] + VB ] + 6V BT GG )+

BE 771 Gra1] + 3VE ]y ] + BB 1 T |+

37 E; [§t2+1?3t+1] + 372Et[@t2+17%t+1] + 372Et[?3t2+1§t+1]> + ')a

where the second equality follows from the Maclaurin sefioes” = 1 + = + 2%/2 + 23 /6 + - - -
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Subsequently applying a third-order Maclaurin serigegdl — r) ~ —x — 2*/2 — 2* /3 implies

Ui+ Se+ V9~ B[] + EGen] + v E[i]
— 5(Bilmi] = (Bil7a))®) + (Blgia] — (Bilgia))?) + 22 (Blgi] — (Eilgea])?))
— Y(EelFer10e1] — Ee[fea] Ee[r1]) — V(Ee[Ge+10e1] — B[] Ee[Gera])
— (Bifer19e01] — Eul7ea] Ee[Gera])

§(B 7)) = BE (R Byt ] + 2(E#iia])?)

§(Eill] = 3B[gi1) Eil 97 1]) + 2(Eilgi41])°)

+ %73(Et[@?+1] — 3E4[Ji1] By [@?ﬂ] + 2(E[i11])?),

+ o+

after dropping the higher-order terms. Therefore, curoemput is approximated by

VY = YE G — T — %(Vart Ti1 + vary Jop1 + 77 var o)
— (v covi(Teet, e1) + 7 COVe(Tiq1, Gern) + COVe(Tir1, Piv1))

+ %(Sk@wt i1 + skewy Go1 + 7° skewy Jiq1),

wherer, = i, + §; — Byt — Eigiyr is theex-antereal rateyary (vi41) = Ei[274] — (Ei[Z441])?

is the variance of, skew, &y = Ey[2} 1] — 3E[Z41] By [27, 1] + 2(E4[Z441])? is the third moment

of x, andcovy (@41, Y1) = Eir[ri1Yir1] — Eilrir1) Eiyesa] 1S the covariance betweenandy.
The derivation of 25) follows very similar steps, although it contains signifidg more terms.

C SOLUTION METHOD

C.1 BASELINE MODEL We begin by compactly writing the detrended equilibriumtegsas

Elf(Vit1, Ve, €041)|2e, 9] = 0,

where f is a vector-valued functiory = (g, s, 0,,05,¢,7, 9/, n, @, mc,i,i", w9) is a vector of
variablesg = [ey, €5, €4, €5, €5,]' IS @ vector of shocksy, = (&;,10g(0,,),log(0os), gi, 5¢, Mpi—1),

andv are the parameters. Sin¢e, andy,_; only appear in the policy rule, we definedy,_; =

(i )P (§,—1)?P~V and rewrote the rule &g = mp;_1 (2(7{")?~ (g:7:/g) %) " exp(oieis).-

There are many ways to discretize the exogenous state lesjah, log(o,.), andlog(os.,).
We use the Markov chain in Rouwenhorst (1995), which Kopeahkgt Suen (2010) show out-
performs other methods for approximating autoregressigegsses. The bounds gpn s;, and
mp;_, are settat3%, +2%, and+2% of the deterministic steady state to contain the filteretbsta
variables. We discretize the state variables ift®, 7,7, 7, 7) evenly-spaced points. There are
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D = 86,436 nodes in the state space, and the realization, @n noded is denotedz;(d). The
Rouwenhorst method provides integration nodes[for.(m), log(c, i+1(m)), log(os14+1(m))]
that are the same as the respective state variables. Howlesegrrocesses fay;; ands;; do
not have a standard autoregressive form because of theastarbolatility. Thus, the first moment
shocks,[e,11,¢€5.41], are discretized separately from the volatility processdse policy func-
tions are then interpolated at realizationgjaf, (m) ands;,(m) that can occur between nodes in
the state space. We use the same number of interpolatios asdke state variabled, 9,7,7,7),
or M = 12,348, and the Rouwenhorst method provides weights; ), form € {1,..., M}.

For the policy functions, we approximatgz;) and={’(z;). Our choice of policy functions,
while not unique, simplifies solving for the other variabieghe nonlinear system of equations
givenz,. The following steps outline our global policy functionrig¢ion algorithm:

1. Use Sims’s (2002yensys algorithm to solve the log-linear model without the ZLB im-
posed. Then map that solution onto the discretized statedpanitializec, and={™.

2. On iterationj € {1,..., Ny} and for eachd € {1,..., D}, use Chris Sims'ssol ve
to find ¢, and7{*? to satisfyE[f(-)|z:(d), V] ~ 0, where N, is the number of iterations.

Guessing; = ¢;_1(d) andm{” = w3 (d), approximateE[f(-)|z;(d), J] as follows:

(a) Solve for{g,, 4!, i, i,, W, mp,} givené,, 777, andz,(d).
(b) Linearly interpolate the policy functiong; , and7f), at the updated state variables,
z,+1(m), to obtainé,,; (m) andx/} (m) on every integration node; € {1,..., M}.

(c) Given{c,i1(m), % (m)}A_,, solve for the other elements of, ; (m) and compute:

m=1?

E[f(Vir1, vi(d), erq1)[ve(d), V] = Z%:l d(m) f(Vir1(m), vi(d), err1(m)).

Whencsol ve converges, sét;(d) = ¢ andm{*(d) = 7/*.

3. Repeat step 2 untihaxdist; < 107°, wheremaxdist; = max{|¢; — &1/, |7 — wI* | }.

When that occurs, the algorithm has converged to an appaiginonlinear solution.

Figure 11shows the distribution of the absolute value of the errorsasel0 logarithms for
the consumption Euler equation and the Phillips curve. kample, an error of-3 means there
is a mistake ofl consumption good for every,000 goods. The mean Euler equation error is
—3.96 and the mean Phillips curve error4s2.32. By construction, the errors on nodes used in
the solution algorithm are less than the convergence iitet0-°. The larger average errors
are due to linear interpolation of the policy functions wieispect to thég,, s,, mp;_;) states. To
measure the errors between the nodes, we created a new grid watal of D = 850,500 nodes
by increasing the number of points in thie, s;, mp;_1) dimensions to(15,15,15). We used
the same number of points in the; ;, log(c, ), log(o,,)) dimensions since they are discretized
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Figure 11: Distribution of Euler equation and Phillips ceierrors in base 10 logarithms

with the Rouwenhorst method, which means the correspondiagration weights and nodes are
state dependent. Therefore, the reported errors are temtsgith the accuracy of the integral
calculated when solving the model. Calculating the erretsvben the nodes corresponding to the
exogenous state variables would require changing the ncahartegration method (e.g., Gauss-
Hermite quadrature). We decided not to show those erromusedhen the accuracy of the integral
used to compute the errors would be inconsistent with théoastused to compute the solution.

C.2 CapiTAL MODEL We solve the model with capital in the same way as the baseloul
without capital. The state vector is the same as the basalae!, except itincludes two additional
endogenous state variables, ; andk;,_;. The bounds ow;,, s;, mp;_1, x;_1 andk;_; are set

to £3%, £1.5%, £2%, £10%, and+£7% of steady state. We discretize the state variables into
(4,7,7,7,7,7,7,11) points respectively, so there ate= 5,176,556 nodes in the state space. We
use the most points on the capital dimension because it bagitlest grid. Once again, we set the
number of points on each shock equal to the number of pointiseoorresponding state variable.

D ESTIMATION ALGORITHM

We use a random walk Metropolis-Hastings algorithm to estémour model with quarterly data
from 1986Q1 to 2016Q2. To measure how well the model fits the dee use the adapted particle
filter described in Algorithm 12 in Herbst and Schorfheid®@1®), which modifies the filter in

Stewart and McCarty (1992) and Gordon et al. (1993) to batteount for the outliers in the data.

D.1 METROPOLISHASTINGS ALGORITHM The following steps outline the algorithm:

1. Specify the prior distributions, means, variances, anhds of each element of the vector
Of Ne eStimated parameteI@,E {77 @f? ¢7T7 ¢y7 ga 7_T7 Pi, pg7 Ps; pUg? Poss iy 5-5]7 587 ao’g? UO’s}'
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2. We match data on per capita real GIo#; D P/C N P, the GDP deflatorD EF', the federal
funds rate F'F' R, the macro uncertainty series in Jurado et al. (2003),, and the financial
uncertainty series in Ludvigson et al. (2017);'. The vector of observables is given by

xdate = [N log(RGDP,/CNP,), Alog(DEFE,), log(1+ FFR,/100)/4, 2(UM,), 2(UF,)],

whereA denotes a difference(-) is a standardized variable, ahdg {1,...,7}. When we
filter the data using the model with capital, we add per capighinvestmentR//C N P, to
the vector of observables, £§** also includes\ log(RI;/CNF).

3. Find the posterior mode to initialize the preliminary kbgtolis-Hastings step.
(@) Foralli € {1,..., N,,}, whereN,, = 5,000, apply the following steps:

i. Draw 6; from the joint prior distribution and calculate its densiglue:
log (27" = 3" log p(0: 4 15, 02),

wherep is the prior density function of parametewith meany,; and variancerf.
ii. Given #;, solve the model according #ppendix C If the algorithm converges,
then compute the stochastic steady state, otherwise rejeged(a)i and redrady.
iii. If the stochastic steady state exists, then use thegbafilter in section D.2o ob-
tain the log-likelihood value for the modedg (72, otherwise repeat step 3(a)i.
iv. The posterior log-likelihood itog (7" = log (*""" + log (%!
(b) Calculatemax(log /4, .. ., log (%*") and find the corresponding parameter vedar,

4. Approximate the covariance matrix for the joint postedistribution of the parameters,,
which is used to draw candidates during the preliminary bjstis-Hastings step.

(a) Locate the draws with a likelihood in the top decile. 8tdwe N,, ,.,, = (1 — p)N,,
draws in aN,,, .., X N, matrix,©, and defing® = © — M 6, . /N,., ..
(b) Calculate:: = ©’'6/N,, .., and verify it is positive definite, otherwise repeat step 3.
5. Perform an initial run of the random walk Metropolis-Hags algorithm.
(@) Foralli € {0,..., Ny}, whereN, = 25,000, perform the following steps:

i. Draw a candidate vector of parametgisr?, where

N(éo,CoE) fori = 0,

N(Qi_l, CZ) fori > 0.

éi cand _

We setcy = 0 and tune to target an overall acceptance rate of roughlyt.
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ii. Calculate the prior density valulg ¢*"*", of the candidate draw:"* as in 3(a)i.
iii. Given ég‘md, solve the model according Agppendix C If the algorithm converges,
compute the stochastic steady state, otherwise repeati(hiiraw a nev@f“"d.

iv. If the stochastic steady state exists, then use thectafilter in section D.2to
obtain the log-likelihood value for the modébg /"%, otherwise repeat 5(a)i.
v. Accept or reject the candidate draw according to

(Beamd log ¢eamd) if § =0,
(6:,1og ;) = { (Beamd log ¢5and) if min(L, 65974 /0, ) > 4,

A~

(0;—1,10g l;_1) otherwise

wherew is a draw from a uniform distributionlJ[0, 1], and the posterior log-
likelihood associated with the candidate drawois(¢*? = log (7" 4 log ¢!,

(b) Burn the firstV, = 5000 draws and use the remaining sample to calculate the mean
draw, grreMH — Zf\fN“:il 0;, and the covariance matrixrr<M* . We follow step 4 to
calculatex?"M# put use allN; — N, draws instead of just the uppgth percentile.

6. Following the procedure in step 5, perform a final run offtetropolis-Hastings algorithm,
wheref, = GrreMH andy = SPreMH \We setN, = 100,000 and keep every00th draw.

The remainingl,000 draws form a representative sample from the joint postelenisity.

D.2 ADAPTED PARTICLE FILTER Henceforth, our definition of; from Appendix Cis referred
to as the state vector, which should not be confused withtétte gariables for the nonlinear model.

1. Initialize the filter by drawinde; ,}%__,, forall p € {0,..., N,} and simulating the model,
whereN,, is the number of particles. We initialize the filter with thedi state vectoty, ,,,
which is approximately a draw from the model’s ergodic dbsttion. We setV,, = 40,000.

2. Fort € {1,...,T}, sequentially filter the data with the linear or nonlineardeleas follows:
(@) Forp € {1,..., N,}, draw shocks from an adapted distributien, ~ N(&;, I), where
&, maximizesp(&|ve)p(v|vi—1) andv,_; = Z;\ﬁl vi_1,/N, is the mean state vector.
i. Use the model solution to update the state vestgmyivenv,_, and a guess far;.
Definevy = Hv,, whereH selects the observable variables from the state vector.

ii. Calculate the measurement error (ME),= v — xfe! which is assumed to be
multivariate normally distributedy(&;|v;) = (27) 32| R|~Y2 exp(—&/R71€,/2),
with covariance matrixR = diag(Tume.yo, Tme.rs Tme.is Tme ums Tmeuf)>-

iii. The probability of observing;, givenv,;_1,isp(vi|v;_1) = (27) 32 exp(—£&/&,/2).
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iv. Maximize p(&|vi)p(vi|vi_1) o< exp(—&RE/2) exp(—&,&,/2) by solving for
the optimalz;. We converted MATLAB’Sf m nsear ch routine to Fortran.
(b) Use the model solution to predict the state veotpy, givenv,_; , ande; .
(c) Calculate, ), = vﬁp — x;. The unnormalized weight on partiglas given by

o P& Vip)D(ViplVicip) ~ exp(—fé’pR_lft,p/Q) eXp(_gi,pEtvp/m
tp = — —
g I(Vip|Vio1p, Xt) exp(—(etp — &) (€rp — &1)/2)

Without adaptations; = 0 andw; , = p(&|v:,), as in a basic bootstrap particle filter.
The time¢ contribution to the log-likelihood i@ = S w;,/N,,.

(d) Normalize the weightdy; , = w;,/ Z;V:”l wtp. Then use systematic resampling with
replacement from the swarm of particles as described ingiitea (1996) to get a set
of particles that represents the filter distribution andhudite {vmp};vﬁl accordingly.

3. The log-likelihood idog ¢! = ST log £,

E VECTORAUTOREGRESSIONMODEL

The structural VAR model is given by
Avp =ao+ A+ -+ Ayp+e, t=1,...,T,
wherees, ~ N (0, I). The reduced-form VAR model is obtained by invertingand is given by
yy=bo+DBiyi—1+ -+ Byyp+vy, t=1,....T,

whereby, = A, 'ag is aK x 1 vector of interceptsi3; = A;'A; areK x K coefficient matrices for
j=1,....p, v, = Ay'e, is aK x 1 vector of shocks that has a multivariate normal distributio
with zero mean and variance-covariance mairiandy is a K x 1 vector of endogenous variables.
The VAR is estimated with data generated from the baselingetnar analogous variables in
U.S. data. The variables are ordered as in Christiano e2@05). We rewrite the model &85 =
BX + U and calculate the least squares estimates)ds.. For example, whep = 4 the param-
eters ared = [by, By, By, Bs, By| and the regressors até = [1,Y]_,, Y] ., Y] .. Y] ,]' where
Yr_i = [y1-i,...,yr—i] andU = [vy,...,v7|. The data includes the financial uncertainty series
in Ludvigson et al. (2017), per capita real output growtle, BDP implicit price deflator inflation
rate, real wage growth, the risk premium, and the federal§uate. When using artificial data, we
setp = 1, consistent with the structural model. When using U.S. ,daéacalculate the Bayesian
information criterion (BIC). According to the BIC, the dgteefers one lag, so we focus on that
specification. The structural shocks are identified by a &gl decompositiort; = (A; ') A7 .
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F WELFARE COSTDERIVATION

The representative household’s preferences are given by

> amr—1 o plitm
EW(én)=FE it |2 —x=2
t (C,TL) t;ﬂ [ 1_7 X1+77
When~y # 1, the timet welfare cost)\;, satisfies
EW (@& o) = BEW((1 — M)k, nb)
< (=)t —1 (ni)t+n
- B j—t J _ J
t ; B 11—~ X 1+7
( Lyl—y Bit Lyl+n

:(1—/\15)177Et25j7t7—z —X tZﬂJ 3 1+
=t

n

» f B gt = Bt _y(np)ttn
=(1=2)" EtZB] +Z _;1_7_XEfZBJ 1+
1 1
= (1 =M\ [ BE,weet - — E,W(nh).
=20 (2 (C)+(1—7)(1—ﬂ)) i—a—p e
Solving for )\, yields (L7) in the main text.

G ESTIMATION DIAGNOSTICS

The section provides additional results related to theineal estimation of our baseline model.
Table 3shows how the unconditional moments for the observablesmeafuivalent statistics in the
data. We also show trace plots of our posterior dragsi(e 12, kernel densities of the estimated
parametersfigure 13, and the median filtered observablégire 14 and shocksfigure 15.

Real GDP Growthg;) Inflation Rate fr;) Interest Rateif)
Mean SD Mean SD Mean SD
Data 1.41 2.40 2.18 0.99 3.68 2.77
Model 1.78 2.27 2.56 0.93 4.83 1.43
(1.10,2.49) (1.56,3.25) (1.99,3.11) (0.63,1.37) (3.59,6.05) (0.89,2.16)
Autocorrelations Cross-Correlations
(U, Jt—1) (T, Te—1) (¢, 04—1) (G, ) (Gt 3¢) (¢, 0t)
Data 0.31 0.63 0.99 0.03 0.18 0.50
Model 0.27 0.76 0.91 —0.11 0.16 0.32

(0.02,0.51)  (0.63,0.86)  (0.83,0.96) (—0.46,0.19) (—0.09,0.44) (—0.16,0.68)

Table 3: Unconditional moments. For each draw from the pimstdistribution, we runl0,000 simulations with the
same length as the data. To compute the moments, we firstataltume averages and then the means and quantiles
across the simulations. The values in parenthese$&£5%) credible sets. All values are annualized net rates.
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Figure 12: Trace plots. We obtain&@0,000 draws from each posterior distribution and kept evigi§th draw.
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Figure 14: Time paths of the data (dashed line) and the médittiened series from the baseline model (solid line).
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Figure 15: Median paths of the estimated shocks normaligetdir respective posterior mean standard deviation.
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