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ABSTRACT

Structural models used to study monetary policy often include sticky prices. Calvo pric-

ing is more common but Rotemberg pricing has become popular due to its computational

advantage. To determine whether the data supports that change, we estimate a nonlinear New

Keynesian model with a zero lower bound (ZLB) constraint and each type of sticky prices. The

models produce similar parameter estimates and the filtered shocks are nearly identical when

the Fed was not constrained, but the Rotemberg model has a higher marginal data density and it

endogenously generates more volatility at the ZLB, which helps explain data from 2008-2011.
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1 INTRODUCTION

Structural models used to study monetary policy often include sticky prices. The most common

ways to introduce sticky prices are with Rotemberg (1982) price adjustment costs and Calvo (1983)

random price changes. With Rotemberg pricing firms choose identical prices because they face

the same cost, whereas with Calvo pricing firms differ based on when their price was last reset.

Therefore, the Calvo model contains one additional state variable that tracks firm price dispersion.

Historically linear models provided a good approximation of the data, but the 2008 recession

caused many central banks to reduce their policy rate to its zero lower bound (ZLB). The ZLB

created a kink in the monetary policy rule, which required nonlinear solution and estimation tech-

niques to accurately assess its empirical implications. Unlike linear models, the solution time in

nonlinear models increases with the number of state variables. As nonlinear methods became more

important, Rotemberg pricing increased in popularity.1 To determine whether US data supports that

change, we estimate a nonlinear New Keynesian model with a ZLB and each type of sticky prices.

The two pricing mechanisms produce the same dynamics with a first-order approximation of

the model when trend inflation is zero or there is full indexation to inflation, but differences occur

when those conditions do not hold or the solution is based on a higher-order approximation.2 We

assume full indexation to trend inflation to focus on the role of the ZLB and higher order moments.

The two models produce similar parameter estimates and the filtered shocks are nearly identical

when the Fed was not constrained, but the Rotemberg model has a higher marginal data density and

it endogenously generates more volatility at the ZLB, which helps explain data from 2008-2011.3

The paper proceeds as follows. Section 2 lays out the model with Rotemberg and Calvo pricing,

including the solution and estimation procedures. Section 3 compares the parameter estimates, data

densities, impulse responses, shocks, and frequency/duration of ZLB events. Section 4 concludes.

2 STRUCTURAL MODELS

2.1 HOUSEHOLDS A representative household chooses {ct, nt, bt}
∞

t=0 to maximize expected

lifetime utility, E0

∑

∞

t=0 β̃t[log(ct − hcat−1) − χn1+η
t /(1 + η)], where χ > 0, 1/η is the Frisch

elasticity of labor supply, c is consumption, ca is aggregate consumption, h is the degree of external

habit persistence, n is labor hours, b is the real value of a privately-issued 1-period nominal bond,

E0 is an expectation operator conditional on information in period 0, β̃0 ≡ 1, and β̃t =
∏t>0

j=1 βj .

To introduce fluctuations in the real interest rate, the discount factor, β, is time-varying and follows

log βt = (1− ρβ) log β̄ + ρβ log βt−1 + συυt, 0 ≤ ρβ < 1, υ ∼ N(0, 1), (1)

where β̄ is the discount factor along the steady state growth path. The choices are constrained by

ct+ bt = wtnt+ it−1bt−1/πt+dt, where π is the gross inflation rate, w is the real wage rate, i is the

gross nominal interest rate, and d is a real dividend. The household’s optimality conditions imply

wt = χnη
t (ct − hcat−1),

1 = itEt[qt,t+1/πt+1],

where qt,t+1 ≡ βt+1(ct − hcat−1)/(ct+1 − hcat ) is the pricing kernel between periods t and t + 1.

1This is especially true for nonlinear estimation (Aruoba et al. (2016); Gust et al. (2016); Plante et al. (2016)).

Papers that use Calvo pricing include Fernández-Villaverde et al. (2015), Maliar and Maliar (2015), and Nakata (2015).
2See, for example, Ascari et al. (2011), Ascari and Rossi (2012), Lombardo and Vestin (2008), and Nisticò (2007).
3Miao and Ngo (2014) compare the two pricing mechanisms in a calibrated nonlinear model with a ZLB constraint.
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2.2 FIRMS The production sector consists of a continuum of monopolistically competitive in-

termediate goods firms owned by households and a final goods firm. Intermediate firm f ∈ [0, 1]
produces a differentiated good, yt(f), according to yt(f) = ztnt(f), where n(f) is the labor hired

by firm f and zt = gtzt−1 is technology. The deviations from the steady state growth rate, ḡ, follow

log gt = (1− ρg) log ḡ + ρg log gt−1 + σεεt, 0 ≤ ρg < 1, ε ∼ N(0, 1). (2)

Each intermediate firm chooses its labor to minimize its costs, wtnt(f), subject to its production

function. The final goods firm purchases yt(f) units from each intermediate firm to produce the

final good, yt ≡ [
∫ 1

0
yt(f)

(θ−1)/θdf ]θ/(θ−1), where θ > 1 measures the elasticity of substitution

between intermediate goods. It then maximizes dividends to determine its demand function for

intermediate good f , yt(f) = (pt(f)/pt)
−θyt, where pt = [

∫ 1

0
pt(f)

1−θdf ]1/(1−θ) is the price level.

2.2.1 MODEL 1: PRICE ADJUSTMENT COSTS Following Rotemberg (1982), each intermediate

firm faces a cost to adjusting its price, adjt(f) = ϕ[pt(f)/(π̄pt−1(f)) − 1]2yt/2, where ϕ > 0
scales the size of the cost and π̄ is the gross inflation rate along the steady state growth path. Firm

f chooses its price, pt(f), to maximize the expected discounted present value of future dividends,

Et

∑

∞

k=t qt,kdk(f), where qt,t ≡ 1, qt,k ≡
∏k>t

j=t+1 qj−1,j , and dt(f) = (pt(f)/pt)yt(f)−wtnt(f)−
adjt(f). In symmetric equilibrium, firms choose the same price, so the optimality condition implies

ϕ(π̂t − 1)π̂t = 1− θ + θ(wt/zt) + ϕEt[qt,t+1(π̂t+1 − 1)π̂t+1(yt+1/yt)],

where π̂t ≡ πt/π̄. When ϕ = 0, wt/zt = (θ−1)/θ, which is the inverse of the gross price markup.

2.2.2 MODEL 2: STAGGERED PRICES Following Calvo (1983), a fraction, ω, of intermediate

firms cannot choose their price in a given period. Those firms index their price to steady-state

inflation, so pt(f) = π̄pt−1(f). A firm that can set its price at t chooses p∗t to maximize the expected

discounted present value of future dividends, Et

∑

∞

k=t ω
k−tqt,kd

∗

k, where d∗k = [(π̄k−tp∗t/pk)
1−θ −

(wk/zk)(π̄
k−tp∗t/pk)

−θ]yk. The optimality condition is given by p∗t/pt = θx1,t/((θ−1)x2,t), where

x1,t = (ct − hct−1)
−1ytwt/zt + ωEt[βt+1π̂

θ
t+1x1,t+1],

x2,t = (ct − hct−1)
−1yt + ωEt[βt+1π̂

θ−1
t+1 x2,t+1].

The aggregate price index and the level of price dispersion, ∆t ≡
∫ 1

0
(pt(f)/pt)

−θdf , are given by

ω(πt/π̄)
θ−1 = 1− (1− ω)(µx1,t/x2,t)

1−θ,

∆t = (1− ω)(µx1,t/x2,t)
−θ + ωπ̂θ

t∆t−1,

where µ = θ/(θ−1). Therefore, aggregate output is given by yt = ztnt/∆t, where nt ≡
∫ 1

0
nt(f).

2.3 MONETARY POLICY The central bank sets the gross nominal interest rate according to

it = max{
¯
ı, i∗t}, i

∗

t = (i∗t−1)
ρi (̄ıπ̂φπ

t (ct/(ḡct−1))
φc)1−ρi exp(σννt), 0 ≤ ρi < 1, ν ∼ N(0, 1),

where
¯
ı is the lower bound, i∗ is the notional rate, φπ and φc are the responses to deviations of

inflation from target and deviations of consumption growth from its steady state, and ı̄ and π̄ are

the inflation and interest rate targets, which equal their values along the steady state growth path.
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2.4 EQUILIBRIUM Given the unit root in technology, the model does not have a steady state. To

make the model stationary, we redefine variables that grow in terms of technology (i.e., x̃t ≡ xt/zt).
In both models, the equilibrium system includes the stochastic processes, the ZLB constraint, the

bond market clearing condition, bt = 0, the aggregation rule, c̃t = c̃at , and the following equations:

λ̃t = c̃t − hc̃t−1/gt, (3)

w̃t = χnη
t λ̃t, (4)

1 = itEt[βt+1(λ̃t/λ̃t+1)(1/(gt+1π̄π̂t+1))], (5)

i∗t = (i∗t−1)
ρi (̄ıπ̂φπ

t (gtc̃t/(ḡc̃t−1)
φc)1−ρi exp(σννt). (6)

In addition to the above system of equations, Model 1 includes

ỹt = nt, (7R)

c̃t = [1− ϕ(π̂t − 1)2/2]ỹt, (8R)

ϕ(π̂t − 1)π̂t = (1− θ) + θw̃t + ϕEt[β̃t+1(λ̃t/λ̃t+1)(π̂t+1 − 1)π̂t+1(ỹt+1/ỹt)], (9R)

whereas Model 2 includes

∆tỹt = nt, (7C)

c̃t = ỹt. (8C)

x1,t = λ̃−1
t ỹtw̃t + ωEt

{

βt+1π̂
θ
t+1x1,t+1

}

, (9C)

x2,t = λ̃−1
t ỹt + ωEt

{

βt+1π̂
θ−1
t+1 x2,t+1

}

, (10C)

ωπ̂θ−1
t = 1− (1− ω)(µx1,t/x2,t)

1−θ, (11C)

∆t = (1− ω)(µx1,t/x2,t)
−θ + ωπ̂θ

t∆t−1. (12C)

In Model 1, a competitive equilibrium consists of sequences of quantities, {λ̃t, c̃t, nt, ỹt}
∞

t=0, prices,

{wt, it, i
∗

t , π̂t}
∞

t=0, and exogenous variables, {βt, gt}
∞

t=0, that satisfy the detrended equilibrium sys-

tem, given the initial conditions, {c̃−1, i
∗

−1, β0, g0, ν0}, and shocks, {εt, υt, νt}
∞

t=1. The competitive

equilibrium in Model 2 is the same as Model 1, except it has three new variables, {∆t, x1,t, x2,t}
∞

t=0.

Steady-State Discount Factor β̄ 0.9984 Real GDP Growth Rate Measurement Error SD σme,ŷ 0.00190
Frisch Elasticity of Labor Supply 1/η 3 Inflation Rate Measurement Error SD σme,π 0.00077
Elasticity of Substitution between Goods θ 6 Federal Funds Rate Measurement Error SD σme,i 0.00210
Steady-State Labor n̄ 0.33 Number of Particles Np 40,000
Nominal Interest Rate Lower Bound

¯
ı 1.00017 Number of Posterior Draws Nd 100,000

Table 1: Model and estimation parameters

2.5 SOLUTION METHOD AND ESTIMATION PROCEDURE We solve both models using policy

function iteration. Each iteration, we minimize the Euler equation errors on every node in the state

space. We then compute the maximum distance between the policy functions on any node and

continue iterating until that distance falls below the tolerance criterion. We use the linear solution

as an initial conjecture for the policy functions, approximate the three exogenous processes with

an N-state Markov chain following Rouwenhorst (1995), and use piecewise linear interpolation to

approximate future variables. See Plante et al. (2016) for a detailed description of the algorithm.
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We estimate both models with data on per capita real GDP (RGDP/CNP ), the GDP deflator
(DEF ), and the federal funds rate (FFR) from 1986Q1 to 2014Q2. The matrix of observables is

x̂
data ≡ [log(RGDPt/CNPt)− log(RGDPt−1/CNPt−1), log(DEFt/DEFt−1), log(1 + FFRt/100)/4].

We calibrate five parameters (table 1). The remaining parameters are estimated with a random

walk Metropolis-Hastings algorithm that uses a particle filter to compute the posterior likelihood.

Following Herbst and Schorfheide (2016), we adapt the filter to include information from the

current period, which helps the model match outliers during the Great Recession. The filter uses

40,000 particles and systematic resampling with replacement following Kitagawa (1996). Given

the simulated paths from each model, we transform the predictions for real GDP, inflation, and

the policy rate according to x̂
model
t = [log(gtỹ

gdp
t /ỹgdpt−1), log(πt), log(it)]. The observables contain

measurement error (ME), so x̂
data
t = x̂

model
t + ξt, where ξ ∼ N(0,Σ) is a vector of MEs and

Σ = diag([σ2
me,ŷ, σ

2
me,π, σ

2
me,i]). The variance of each ME is set to 10% of the variance of the data

(table 1). We obtain 100,000 draws from the joint posterior distribution and keep every 100th draw.

A detailed description of our data sources and prior distributions is provided in Plante et al. (2016).

3 MODEL COMPARISON

Table 2 reports the mean as well as the 5th and 95th percentiles of the posterior distribution for the

models with Rotemberg and Calvo pricing. Interestingly, the posterior means are nearly identical

for the two models. For example, the linear mapping between the two sticky price parameters,

ϕ = (θ− 1)ω/((1− β̄ω)(1−ω)), implies that our posterior mean estimate for ω is equivalent to a

Rotemberg coefficient of 97.9523, which is only slightly larger than our actual posterior estimate.

Parameter Rotemberg Calvo Parameter Rotemberg Calvo

ϕ/ω 96.80137 0.7979 ρg 0.20064 0.21807
(67.71867, 131.85091) (0.73078, 0.84921) (0.06547, 0.37805) (0.07278, 0.43623)

h 0.44428 0.44589 ρβ 0.90245 0.91075
(0.30733, 0.57745) (0.31459, 0.57800) (0.87001, 0.92958) (0.88074, 0.93767)

φπ 4.06383 4.13917 ρi 0.81158 0.81990
(3.33170, 4.90267) (3.37918, 5.07870) (0.75375, 0.86060) (0.75209, 0.86683)

φy 1.49057 1.46643 σε 0.00968 0.00972
(1.12702, 1.87727) (1.07218, 1.88719) (0.00738, 0.01241) (0.00723, 0.01248)

ḡ 1.00376 1.00367 συ 0.00215 0.00215
(1.00260, 1.00489) (1.00244, 1.00491) (0.00159, 0.00286) (0.00159, 0.00285)

π̄ 1.00622 1.00622 σν 0.00199 0.00196
(1.00556, 1.00683) (1.00564, 1.00681) (0.00148, 0.00261) (0.00145, 0.00257)

Table 2: Posterior means and (5%, 95%) credible sets of the estimated parameters

Despite the similarities in the posterior distributions, the two models do not fit the data equally

well. Over the entire sample, the marginal data density in the Rotemberg model is 1506.8, whereas

the density in the Calvo model is 1502.9. The exponential of the difference between those values

implies a Bayes factor of 50.1, which provides strong evidence in favor of the Rotemberg model.

A useful way to understand how the dynamics differ in the two models is to compute gen-

eralized impulse responses. Figure 1 plots the responses to a 2 standard deviation (SD) positive

discount factor shock, which is a proxy for a decrease in demand. We examine the responses at two

different initial states of the economy: (1) the stochastic steady state (SS), where there is almost

no expectation of hitting the ZLB constraint and (2) the filtered state corresponding to 2008Q4,

4
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Figure 1: Impulse responses to a 2SD positive discount factor shock. The parameters are set to their posterior means.

which is when the federal funds rate first hit its ZLB constraint. When the economy begins in

steady state, the reduction in demand has nearly the same effect in both models. That indicates the

nonlinearities in the model, aside from the ZLB constraint, have very little effect on the economy.

There are meaningful differences between the two models when the ZLB binds. In both models,

the decrease in demand leads to a larger decline in real GDP growth and inflation because the

central bank cannot dampen the adverse effects of the shock by cutting its policy rate. In the

Rotemberg model, the decline in real GDP growth is accentuated by the sharp increase in the price

adjustment cost, which creates a wedge between output and consumption. In the Calvo model,

the shock has a much more modest effect on real GDP growth and inflation. The differences stem

from the fact that the quadratic price adjustment cost increases as the inflation rate diverges from its

steady state, whereas the inflation rate and the markup of price over marginal cost have competing

effects on the amount of price dispersion. On the one hand, the decline in demand lowers the

real wage, which increases the markup and price dispersion. On the other hand, the shock lowers

inflation, which reduces price dispersion. Those competing effects imply that there is a relatively

small increase in price dispersion at the ZLB and a more limited adverse effect of the constraint.

The impulse responses indicate that the filtered shocks will differ when the Fed is constrained

but produce similar shocks outside of the ZLB period. Figure 2 plots the median filtered shocks

from the Calvo model minus those from the Rotemberg model. The differences are relative to

the posterior mean estimate of the Rotemberg model’s shock SD, so 0.5 means the Calvo model

predicted a shock 0.5 SDs larger than the Rotemberg model. The largest differences between the

two models occur from 2008Q4 to 2010Q4, which is when the notional interest rate was most
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Figure 2: Median filtered shocks in the Calvo model minus the Rotemberg model. The vertical dashed line is 2008Q4.

negative and the Fed was the most constrained. For example, the Calvo model predicts a larger

monetary policy shock is necessary to explain the data in 2008Q4, which is at odds with the Fed’s

expansionary policy. The larger policy shock compensates for the lower sensitivity in the model

to demand shocks. Although the ZLB continues to bind until the end of our sample, the shocks

implied by the two models are very similar after 2010Q4 since the notional rate hovered near zero.

Rotemberg Calvo

Mean 5% 95% Mean 5% 95%

Unconditional ZLB Frequency (% of Quarters) 4.44 0.88 13.16 5.18 0.88 15.79
SS Conditional ZLB Duration (Quarters) 3.11 1.00 9.00 3.37 1.00 10.00
2008Q4 Conditional ZLB Duration (Quarters) 5.43 2.00 12.00 6.10 2.00 15.00

Table 3: Zero lower bound statistics

Two other key properties of our model are the frequency and duration of ZLB events, which are

shown in table 3. To calculate those statistics, we conduct 10,000 simulations for each posterior

draw so the values take into account both parameter uncertainty and the distribution of shocks.

The unconditional ZLB frequency is based on simulations with the same length as the data and is

reported as the percent of quarters where the ZLB binds. The ZLB durations represent the number

of quarters that the ZLB binds in the first ZLB event, conditional on when the economy is initialized

at the stochastic steady state or the mean filtered state corresponding to 2008Q4. The Calvo model

predicts a higher mean frequency of ZLB events as well as slightly longer ZLB events, but those

difference are fairly insignificant since there is considerable overlap in the respective credible sets.

4 CONCLUSION

This paper estimates a nonlinear New Keynesian model with Rotemberg quadratic price adjustment

costs and Calvo random price changes. The Rotemberg model has a higher marginal data density

and better fits the data when the central bank is constrained. Those results indicate that the recent

trend toward Rotemberg pricing is justified by the data and not just for computational convenience.
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