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1 RELATIONSHIP BETWEEN UNCERTAINTY AND OUTPUT OUTSIDE THE U.S.

Although our focus is on the U.S., we estimate our VAR using data from other countries that faced

constraints on monetary policy to see whether there were similar changes in the correlation. The

Euro-zone deposit rate and the bank rate in the U.K. were reduced to 0.25% and 0.5%, respectively,

in 2009Q1. Unfortunately, we cannot estimate the model for the Euro area since data is only

available since 1995Q1. For the U.K., we use analogous observables to the U.S. data and the

same sample, except the pre-ZLB and ZLB samples are split in 2009Q1. The correlation in the

pre-ZLB sample exceeds zero in 21% of draws and the median correlation is −0.13. In the ZLB

sample, however, the correlation is positive in only 0.3% of draws and the median is −0.62. The

difference between the ZLB and pre-ZLB correlations is positive in only 1.5% of draws and the

median difference is −0.46, which indicates that the constraint had a similar effect in the U.K.

The central bank has been constrained in Japan for a much longer period than in the U.S and

Euro area. In April 1995, the Bank of Japan lowered its discount rate to 1%, and the T-bill rate

hit 0.37% in 1995Q3. When we split the sample in 1995Q3, the median correlation is 0.25 in the

pre-ZLB sample (1986Q1-1995Q2) and −0.25 in the ZLB sample (1995Q3-2014Q2). The median

difference between the correlations is −0.50, and the correlation is positive in only 0.6% of draws,

similar to our results with U.S and U.K. data. We also examine the ZLB period before the Great

Recession (1995Q3-2007Q4) and since Great Recession (2008Q1-2014Q2). The correlations in

those samples are −0.21 and −0.29, respectively. In both cases, the differences from the pre-ZLB

sample are positive in less than 2% of draws. Those results provide further evidence that the ZLB

is the main source of the stronger correlation, rather than a unique feature of the Great Recession.

We also examine the correlations using survey data from the Euro area and the U.K. The Eu-

ropean Central Bank (ECB) has conducted its own SPF since 1999Q1. It asks for forecasts of

Euro area real GDP growth. For example, the survey conducted in 1999Q1 requests forecasts for

1999Q3, given the last GDP release is from 1998Q3. Similar to the U.S. SPF, we calculate the

forecast dispersion, ECB SPF FDt = ŷ75t+2|t−2
− ŷ25t+2|t−2

, where ŷxt+2|t−2
is the xth percentile of

the quarter t forecast of real GDP growth in quarter t + 2, given data in quarter t − 2 and earlier.

The correlation between Euro area real GDP growth and the ECB SPF FD in the pre-ZLB sample

(1999Q1-2008Q4) is −0.32, and the correlation in the ZLB sample (2009Q1-2014Q4) is −0.55.

The Bank of England conducts a survey called the Survey of External Forecasters (BOE SEF),

which has asked for forecasts of real GDP growth since 1998Q1.1 Before 2006Q2, the survey

asked for projections in quarter 4 of the survey year, quarter 4 1 year ahead, and the same quarter

2 years ahead. For example, the forecast dates in the 2006Q1 survey were 2006Q4, 2007Q4, and

2008Q1. Since 2006Q2, the survey has asked for projections for the same quarter 1, 2, and 3 years

ahead. Unfortunately, we cannot calculate correlations in the pre-ZLB sample because the forecast

horizons change. In the ZLB sample, the correlation between real GDP growth and the dispersion

in forecasts 1 year ahead is −0.63, which is similar to the correlations in the U.S. and Euro area.2

2 LONGER-TERM FORECASTS

In the paper, we exclusively focus on survey-based forecasts over a one-quarter horizon. The

SPF also asks forecasters to predict various macro variables over longer horizons. We denote the

1See Boero et al. (2008) for more information about the BOE SEF and how it compares to other related surveys.
2There is also a survey of Japanese professional forecasters, but it began in mid-2004 and does not provide a large

enough sample. See Komine et al. (2009) for details about the survey and analysis of the forecasters’ performance.
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Real GDP Growth IP Growth

SPF(2) SPF(3) SPF(4) SPF(2) SPF(3) SPF(4)

Pre-ZLB Sample
(1986Q1-2008Q3)

−0.09 −0.10 −0.02 −0.26*** −0.24** −0.17*

ZLB Sample
(2008Q4-2014Q2)

−0.64*** −0.47** −0.46** −0.76*** −0.57*** −0.32*

Difference
(ZLB-Pre-ZLB)

−0.55*** −0.37** −0.45** −0.50*** −0.34** −0.15

Table 1: Correlations between the SPF FD j quarters ahead and our two measures of economic activity before and

during the ZLB period. An asterisk indicates a correlation in the pre-ZLB or ZLB sample is statistically less than 0 or

the difference between the correlations in the two samples is significant at a ***1%, **5%, and *10% level.

inter-quartile range of the quarter t forecasts of real GDP growth in quarter t + k as SPF FD(k).
Table 1 plots the correlations between the SPF FD(k) and our two measures of economic activity

for k ∈ {2, 3, 4}. All of our qualitative results are robust to longer forecasting horizons. The

correlations in the pre-ZLB sample are weak when calculated with real GDP growth and slightly

stronger with IP growth. In the ZLB sample, however, the correlations are far more negative, and

the differences from the pre-ZLB sample are significant at a 5% level or higher in all but one case.3

3 ESTIMATION ALGORITHM

We use a random walk Metropolis-Hastings algorithm to estimate our model with quarterly data

from 1986Q1 to 2014Q2. To measure how well the model fits the data, we use the adapted particle

filter described in Algorithm 12 in Herbst and Schorfheide (2016), which modifies the filter in

Stewart and McCarty (1992) and Gordon et al. (1993) to better account for outliers in the data.

3.1 METROPOLIS-HASTINGS ALGORITHM The following steps outline the algorithm:

1. Specify the prior distributions, means, variances, and bounds of each element of the vector

of Ne estimated parameters, θ ≡ {ϕ, h, ρβ, ρg, ρi, σε, συ, σν , φπ, φy, ḡ, π̄}.

2. Our observables are the per capita real GDP growth rate, the inflation rate, and the federal

fund rate. To match their model implied values, transform the data on per capita real GDP

(RGDP/CNP), the GDP Deflator (DEF), and the federal funds rate (FFR) according to:

ŷdatat = log(RGDPt/CNPt)− log(RGDPt−1/CNPt−1),

π̂data
t = log(DEFt/DEFt−1),

ı̂datat = log((1 + FFRt/100)
1/4),

The matrix of observables is x̂data ≡ [ŷdatat , π̂data
t , ı̂datat ]2014Q2

t=1986Q1
, which has T × 3 elements.

3. Find the posterior mode to initialise the preliminary Metropolis-Hastings step.

(a) For all i ∈ {1, . . . , Nm}, where Nm = 10,000, apply the following steps:

i. Draw θ̂i from the joint prior distribution and calculate its density value:

log ℓpriori =
∑Ne

j=1
log p(θ̂i,j|µj, σ

2
j ),

3Andrade et al. (2014) examine forecaster disagreement over longer horizons using Blue Chip Financial Forecasts.
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where p is the prior density function of parameter j with mean µj and variance σ2
j .

ii. Given θ̂i, solve the model according to Appendix A. If the algorithm converges,

then compute the stochastic steady state, otherwise repeat step 3(a)i and redraw θ̂i.

iii. If the stochastic steady state exists, then use the particle filter in section 3.2 to ob-

tain the log-likelihood value for the model, log ℓmodel
i , otherwise repeat step 3(a)i.

iv. The posterior log-likelihood is log ℓposti = log ℓpriori + log ℓmodel
i

(b) Calculate max(log ℓpost1 , . . . , log ℓpostNm
) and find the corresponding parameter vector, θ̂0.

4. Approximate the covariance matrix for the joint posterior distribution of the parameters, Σ,

which is used to draw candidates during the preliminary Metropolis-Hastings step.

(a) Locate the draws with a likelihood in the p = 0.9 percentile. Stack the Nm,sub =

(1−p)Nm draws in a Nm,sub×Ne matrix, Θ̂, and define Θ̃ = Θ̂−
∑Nm,sub

i=1 θ̂i,j/Nm,sub.

(b) Calculate Σ = Θ̃′Θ̃/Nm,sub and verify it is positive definite, otherwise repeat step 3.

5. Perform an initial run of the random walk Metropolis-Hastings algorithm.

(a) For all i ∈ {0, . . . , Nd}, where Nd = 25,000, perform the following steps:

i. Draw a candidate vector of parameters, θ̂candi , where

θ̂i
cand ∼

{

N(θ̂0, c0Σ) for i = 0,

N(θ̂i−1, cΣ) for i > 0.

We set c0 = 0 and tune c to target an overall acceptance rate of roughly 30%.

ii. Calculate the prior density value, log ℓpriori , of the candidate draw, θ̂candi as in 3(a)i.

iii. Given θ̂candi , solve the model according to Appendix A. If the algorithm converges,

compute the stochastic steady state, otherwise repeat 5(a)i and draw a new θ̂candi .

iv. If the stochastic steady state exists, then use the particle filter in section 3.2 to

obtain the log-likelihood value for the model, log ℓmodel
i , otherwise repeat 5(a)i.

v. Accept or reject the candidate draw according to

(θ̂i, log ℓi) =











(θ̂candi , log ℓcandi ) if i = 0,

(θ̂candi , log ℓcandi ) if log ℓcandi − log ℓi−1 > û,

(θ̂i−1, log ℓi−1) otherwise,

where û is a draw from a uniform distribution, U[0, 1], and the posterior log-

likelihood associated with the candidate draw is log ℓcandi = log ℓpriori + log ℓmodel
i .

(b) Burn the first Nb = 5000 draws and use the remaining sample to calculate the mean

draw, θ̄preMH =
∑NpreMH

i=Nb+1
θ̂i, and the covariance matrix, ΣpreMH . We follow step 4 to

calculate ΣpreMH but use all Nd −Nb draws instead of just the upper pth percentile.

6. Following the procedure in step 5, perform a final run of the Metropolis-Hastings algorithm,

where θ0 = θ̄preMH and Σ = ΣpreMH . We set Nd = 100,000 and keep every 100th draw. The

remaining 1,000 draws form a representative sample from the joint posterior distribution.
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3.2 ADAPTED PARTICLE FILTER The following steps outline the filter:

1. Initialise the filter by drawing et,p = {εt,p, υt,p, νt,p}
0
t=−24 for all p ∈ {0, . . . , Np} and simu-

lating the model, where Np is the number of particles. The final state vector, z0,p, represents

a draw from the ergodic distribution and is used to initialise the filter. We set Np = 40,000.

2. For all p ∈ {1, . . . , Np} apply the following steps:

(a) Draw a vector of shocks from an adapted distribution, et,p ∼ N(ēt, I), where ēt is

chosen to maximise p(ξt|zt)p(zt|zt−1) and zt−1 =
∑Np

p=1
zt−1,p/Np is the state vector.

i. Given zt−1 and a guess for ēt, obtain zt, and the endogenous variables, wt.

ii. Transform the predictions for real GDP (ỹgdp), inflation (π), and the policy rate (i)

according to x̂
model
t =

[

log(gtỹ
gdp
t /ỹgdpt−1), log(πt), log(it)

]

.

iii. Calculate the difference between the model predictions and the data, ξt = x̂
model
t −

x̂
data
t , which is assumed to be multivariate normally distributed with density:

p(ξt|zt) = (2π)−3/2|H|−1/2 exp(−ξ′tH
−1ξt/2),

where H ≡ diag(σ2
me,ŷ, σ

2
me,π, σ

2
me,i) is the measurement error covariance matrix.

iv. The probability of observing the current state, zt, given, zt−1, is given by

p(zt|zt−1) = (2π)−3/2 exp(−ē
′
tēt/2).

v. Maximise p(ξt|zt)p(zt|zt−1) ∝ exp(−ξ′tH
−1ξt/2) exp(−ē

′
tēt/2) by solving for

the optimal ēt. We converted MATLAB’s fminsearch routine to Fortran.

(b) Obtain zt,p, and the vector of endogenous variables, wt,p, given zt−1,p and et,p.

(c) Calculate, ξt,p = x̂
model
t,p − x̂

data
t . The unnormalised weight on particle p is given by

ωt,p =
p(ξt|zt,p)p(zt,p|zt−1,p)

g(zt,p|zt−1,p, x̂data
t )

∝
exp(−ξ′t,pH

−1ξt,p/2) exp(−e
′
t,pet,p/2)

exp(−(et,p − ēt)′(et,p − ēt)/2)
.

If there was no adaptation, then ēt = 0 and ωt,p = p(ξt|zt,p), as it is in a basic filter.

The contribution to the model’s likelihood in period t is then ℓmodel
t =

∑Np

p=1
ωt,p/Np.

(d) Normalise the weights, Wt,p = ωt,p/
∑Np

p=1
ωt,p. Then use systematic resampling with

replacement from the swarm of particles as described in Kitagawa (1996) to get a set

of particles that represents the filter distribution and reshuffle {zt,p}
Np

p=1 accordingly.

3. Apply step 2 for all t ∈ {1, . . . , T}. The log-likelihood is then log ℓmodel =
∑T

t=1
log ℓmodel

t .

3.3 SV ESTIMATION PROCESS To estimate the parameters of the stochastic volatility process

we conduct a mode search over λ = (ρσ, σx), conditional on the posterior mean, θ̄, of the baseline

model. The priors for (ρσ, σx) are the same as those for (ρg, σε) (see table 4 in the main paper).

1. For all i ∈ {1, . . . , Nm}, where Nm = 500, apply the following steps:

(a) Draw λ̂i from the joint prior distribution and calculate its density value:

log ℓpriori =
∑

2

j=1
log p(λ̂i,j|µj, σ

2
j ),

where p is the prior density function of parameter j with mean µj and variance σ2
j .
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(b) Given λ̂i and θ̄, solve the model according to Appendix A. If the algorithm converges,

then compute the stochastic steady state, otherwise repeat step 3(a)i and redraw λ̂i.

(c) If the stochastic steady state exists, then use the particle filter in section 3.2 to obtain

the log-likelihood value for the SV model, log ℓSV model
i , otherwise repeat step 3(a)i.

(d) The posterior log-likelihood is log ℓposti = log ℓpriori + log ℓSVmodel
i

2. Calculate max(log ℓpost1 , . . . , log ℓpostNm
) and find the corresponding parameter vector, λ̂.

We verified that the mode search produced the desired result by interpolating a surface based

on the draws, as shown in figure 1. There is a clear global maximum, since the surface is concave.

0.5
0.6

0.7
0.8

0.9

0.1
0.125

0.15
0.175

0.2
1537

1537.5

1538

1538.5

1539

1539.5

ρσσx

Figure 1: Posterior likelihoods from various (ρσ, σx) combinations. The solid lines indicate the global maximum.

We conducted a second mode search, conditional on our estimates of the SV parameters and all

of the posterior mean parameters except σ̄ε. Given each draw from the prior distribution for σ̄ε, we

solve the model and calculate the likelihood. After 100 draws, the likelihood was maximised with

σ̄ε = 0.00885, which is only slightly less than our posterior estimate of 0.00968. Moreover, values

below 0.007 led to significantly lower likelihoods. These results suggest that estimating the fully

nonlinear model with SV would have relatively small impacts on the other posterior estimates.

4 ESTIMATION DIAGNOSTICS

We programmed the estimation procedure in Fortran and ran it on the Hopper computing cluster

at Auburn University using Open MPI. We first solved and filtered the model 10,000 times to

initialise the Metropolis-Hastings (MH) algorithm at the posterior mode and obtain an estimate of

the parameter covariance matrix. We then obtained 25,000 draws from the posterior distribution.

Using those draws, we recalculated the covariance matrix and used the posterior mean to initialise

a second stage of the MH algorithm. We obtained 100,000 draws and kept every 100th draw

without a burn period. The remaining 1,000 draws, which are shown in figure 2, form our posterior

distribution. To show that our chains converged to their ergodic distributions, we used the Geweke

χ2 convergence test following Geweke (1992, 1999). The default test is to burn the first half of the

chain and then compare the first 20% to the last 50% of the draws. As long as we thin the chains by
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Figure 2: Trace plots. We drew 100,000 draws from each posterior distribution and kept every 100th draw.
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Figure 3: Prior distributions (solid lines) vs. kernel density of the posterior draws (dashed lines).
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Figure 4: Time paths of the data (dashed line) and the median filtered series from the model (solid line).
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Figure 5: Median paths of the estimated shocks. The horizontal dashed lines denote a two standard deviation shock.

9



PLANTE, RICHTER, AND THROCKMORTON: THE ZLB AND ENDOGENOUS UNCERTAINTY

at least 2 draws to reduce the effects of serial correlation, we failed to reject that the sample means

at the start and end of the chain were equal at a 5% confidence level for every estimated parameter.

We also applied a kernel density estimator to the draws from our posterior distribution to infer

the probability density functions of each parameter. The resulting densities are then compared to

the corresponding prior density functions in figure 3. In most cases, the mean of the posterior

distribution differs from the prior distribution and the variance is smaller. Both of those results

indicate that the parameters are well informed. As further evidence, we estimated the model with

the measurement error variances set to 5% and 20% of the data variance. The results were similar.

Figure 4 compares the median paths of real GDP growth, the inflation rate, and the policy rate

predicted by the model (solid lines) to their time series in the data (dashed lines). Figure 5 shows

the corresponding sequences of productivity growth, discount factor, and monetary policy shocks.

To calculate the model predictions and the shocks, we first filter the model and compute the mean

path for each draw from our posterior distribution and then use those paths to find the median

time series. Our results show that the model fits data well. It matches the regular fluctuations in

real GDP growth and inflation, including the sharp declines that occur at the onset of the Great

Recession. It also captures the lower-frequency movements in the federal funds rate and, most

importantly, the long ZLB period, which is caused by a large discount factor shock in 2008Q4.

5 EMPIRICAL FIT OF THE STRUCTURAL MODEL

Real GDP Growth (ŷ
gdp
t ) Inflation Rate (πt) Interest Rate (it)

Mean SD Mean SD Mean SD

Data 1.44 2.45 2.25 0.97 3.92 2.70
Model 1.54 2.48 2.50 0.96 4.70 1.73

(0.66, 2.43) (2.02, 3.04) (1.99, 3.00) (0.73, 1.25) (3.35, 6.09) (1.18, 2.40)

Autocorrelations Cross-Correlations

(ŷgdpt , ŷ
gdp
t−1

) (πt, πt−1) (it, it−1) (ŷgdpt , πt) (ŷgdpt , it) (πt, it)

Data 0.30 0.63 0.99 0.01 0.18 0.47
Model 0.49 0.72 0.89 −0.40 0.06 0.30

(0.29, 0.66) (0.60, 0.83) (0.81, 0.95) (−0.63,−0.12) (−0.22, 0.33) (−0.04, 0.60)

Table 2: Unconditional moments. For each draw from the posterior distribution, we run 10,000 simulations with the

same length as the data. To compute the moments, we first calculate time averages and then the means and quantiles

across the simulations. The values in parentheses are (5%, 95%) credible sets. All values are annualized net rates.

Table 2 compares unconditional moments based on simulations of our model to equivalent

statistics in the data. For each posterior draw, we simulate the model 10,000 times for the same

number of quarters as our sample. Each simulation is initialised with a state vector drawn from

the model’s ergodic distribution. The table reports the average and (5%, 95%) credible sets of

the moments across the posterior draws and the simulations. Of all the moments we report, the

mean, standard deviation, and autocorrelation of real GDP growth are the most important to our

research question about the relationship between real GDP growth and its uncertainty. For all three

statistics, the values in the data are near the mean and within the credible sets predicted by the
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model. Also, the mean, standard deviation, and autocorrelation of the inflation rate and the mean

of the policy rate are within the model’s credible sets. The model does not do as well matching the

volatility and autocorrelation of the policy rate. The policy rate is highest in the 1980s and when

we remove this period, the volatility is closer to the model’s prediction. Also, the federal funds rate

is our only observable that has a long period of near zero volatility, which is over-represented in

the data relative to the unconditional simulations. The continued variation in real GDP growth and

the inflation rate during the ZLB episode helps those variables better match their moments. The

cross-correlation in the data between real GDP growth and inflation is outside the model’s credible

set, but both cross-correlations with the policy rate are near the mean values predicted by model.
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Figure 6: Distribution of ZLB events in our model. The vertical dashed line represents the expected ZLB duration.

Another key test of our model is whether it produces ZLB durations that are consistent with

forecasters’ expectations. Prior to the FOMC’s August 2011 date-based forward guidance, survey

data indicated the 3-month T-bill rate was not expected to remain near zero for very long. Blue

Chip consensus forecasts between 2008Q4 and 2010Q4 reveal that the 3-month T-bill rate was

expected to exceed 0.5% within three or four quarters. Figure 6 plots histograms of the durations

of each ZLB event in our model. To compute these histograms, we initialise 10,000 simulations at

the filtered state corresponding to 2008Q4, so economic conditions are similar to what forecasters

faced. We then count the number of quarters in the first ZLB event for each simulation and report

the frequency of the ZLB event durations across the 10,000 simulations. The most likely ZLB du-

ration is 3 quarters and the expected duration is 5.4 quarters, which reflects a long right tail. Those

results show that our model produces ZLB events that are in line with survey data. Furthermore,

when we filter the data, the model is able to capture the entire ZLB event from 2008Q4 to 2014Q2.

6 GENERALISED IMPULSE RESPONSE FUNCTIONS

The general procedure for calculating GIRFs is described in Koop et al. (1996). The GIRFs are

based on the average path from repeated model simulations and generated with the following steps:

1. Initialise each simulation with the desired state vector, z0. That vector is either the stochastic

steady state or the median filtered state vector for a specific quarter (e.g., 2008Q4). To cal-

culate the stochastic steady state, we turn off all shocks and simulate the model. The values

11
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that the simulation converges to is defined as the stochastic steady state, which differs from

the deterministic steady state because the policy functions embed higher order moments.

2. Draw random productivity growth, discount factor, and policy shocks, {εt, υt, νt}
N
t=0, for

each simulation, where N is the simulation length. From the initial state vector, z0, simulate

R equilibrium paths, {xj
t(z0)}

N
t=0, where j ∈ {1, 2, . . . , R} and R = 100,000.

3. Using the same R draws of shocks from step 2, replace the discount factor shock in period

one with a 2 SD shock (i.e., set υ1 = 2συ for all j ∈ {1, 2, . . . , R}). Then simulate the model

with these alternate sequences of shocks to obtain R equilibrium paths, {xj
t(z0, υ1)}

N
t=0.

4. Average across the R simulations from step 2 and step 3 to obtain average paths given by

x̄t(z0) = R−1
∑R

j=1
x
j
t (z0), x̄t(z0, υ1) = R−1

∑R
j=1

x
j
t (z0, υ1).

5. The difference between the two average paths is a GIRF.

7 VAR MODEL AND ESTIMATION APPENDIX

7.1 MODEL Following Primiceri (2005), we begin by defining the structural model with k lags:

Atyt = ft + F1,tyt−1 + . . .+ Fk,tyt−k + Σtεt, t = 1, . . . , T, (1)

where yt is a n × 1 vector of observed variables, ft is a n × 1 constant, Fi,t are n × n coefficient

matrices, Σt = diag(σ1,t, . . . , σn,t), and εt has a multivariate standard normal distribution. Our

recursive identification scheme assumes At is lower triangular, meaning for i, j = 1, . . . , n,

At =











1 i = j

αi,j,t i > j

0 i < j

.

Premultiplying (1) by A−1
t yields the reduced form VAR model, given by,

yt = bt +B1,tyt−1 + . . .+Bk,tyt−k + A−1

t Σtεt,

where bt = A−1
t ft and Bi,t = A−1

t Fi,t. We define the row vector of all right-hand-side coefficients

as β ′
t = [b′t, vec(B1,t)

′, . . . , vec(B1,t)
′] and the corresponding n × n(1 + nk) matrix of regressors

as Xt−1 = In ⊗ (1, y′t−1, . . . , y
′
t−k), which simplifies the model to yt = Xt−1βt + A−1

t Σtεt.
We define αt = (α2,1,t, α3,1,t, α3,2,t, α4,1,t, . . . , αn,n−1,t)

′ and ht = (log(σ1,t), . . . , log(σn,t))
′.

The time-varying parameters evolve according to first-order random walk processes, given by,

βt = βt−1 + νt, αt = αt−1 + ζt, ht = ht−1 + ηt,

where the disturbances follow a multivariate normal distribution, given by,









εt
νt
ζt
ηt









∼ N(0, V ), V ≡









I 0 0 0
0 Q 0 0
0 0 S 0
0 0 0 W









.

I is an identity matrix, and S is a block diagonal matrix with a block for each row of matrix A.
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7.2 PRIORS The priors for the initial states, β0, α0, and h0, are normally distributed, while the

priors for the hyperparameters, Q, S, and W , are distributed as inverse-Wishart. Those distribu-

tions are calibrated with OLS point estimates and standard errors from an analogous time-invariant

VAR, with a training sample that precedes the one of interest. Specifically, the priors are given by

β0 ∼ N(β̂OLS, 4 var(β̂OLS)), α0 ∼ N(α̂OLS, 4 var(α̂OLS)),

h0 ∼ N(log σ̂OLS, In)), Q ∼ IW(40k2

Q var(β̂OLS), 40),

W ∼ IW(4k2

W In, 4), Si ∼ IW((i+ 1)k2

S var(α̂i,OLS), 2),

where kQ = 0.01, kS = 0.1, kW = 0.01, and i indexes the rows of matrix A.

7.3 ESTIMATION PROCEDURE The model is estimated with a Gibbs sampler, which permits in-

tractable likelihood functions and posterior distributions without an analytic normalizing constant.

After initializing β, α, h, Q, W , and Si, the sampler proceeds through the following steps:

1. Draw W given h.

2. Draw β given α, h,Q, y, which relies on a Bayesian smoother (see Carter and Kohn (1994)).

3. Draw Q given β,

4. Draw αi given β, h, Si, y, which also relies on a Bayesian smoother.

5. Draw Si given αi.

6. Draw h as follows:

(a) Draw s from a mixture of normals given W,β,Q, α, S, h, y following Kim et al. (1998)

(b) Draw h given W,β,Q, α, S, y, s.

Each step makes draws for the entire sample and the extracted parameters are classified as smoothed

estimates. See Primiceri (2005), Del Negro and Primiceri (2015), and the code from Koop and

Korobilis (2010) for details on how to draw the parameters. The code is available at https://

sites.google.com/site/dimitriskorobilis/matlab/code-for-varsand im-

plements the correction in Del Negro and Primiceri (2015). Specifically, α, β,Q, S,W must be

drawn conditional on h and the data before the mixture indicators, s, that are used to select the

component of the mixture for each variable at each date are drawn, then h is drawn.

8 ADDITIONAL DATA SOURCES

U.K. Real GDP: Chained 2000 national currency units, seasonally adjusted. Source: OECD,

Main Economic Indicators. (FRED ID: NAEXKP01GBQ652S).

U.K. GDP Deflator: Quarterly, seasonally adjusted. Source: OECD, Main Economic Indicators.

(FRED ID: GBRGDPDEFQISMEI).

U.K. 3-Month Treasury Rate: Quarterly average of monthly values. Source: OECD, Main Eco-

nomic Indicators. (FRED ID: IR3TTS01GBM156N).

Japan Real GDP: Chained 2005 yen, seasonally adjusted. Source: OECD, Quarterly National

Accounts. (FRED ID: JPNRGDPQDSNAQ).
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Japan Population: Working Age Population: Aged 15 and Over: All Persons. Source: OECD,

Main Economic Indicators. (FRED ID: LFWATTTTJPQ647S).

Japan Consumer Price Index: Index 2005=100, not seasonally adjusted. Source: OECD, Main

Economic Indicators Database.

Japan T-bill Rate: Quarterly average of monthly values. Source: International Monetary Fund,

International Financial Statistics.
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