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ABSTRACT

This paper shows the success of valuation risk—time-preference shocks in Epstein-Zin

utility—in resolving asset pricing puzzles rests sensitively on the way it is introduced. The

specification used in the literature is at odds with several desirable properties of recursive pref-

erences because the weights in the time-aggregator do not sum to one. When we revise the

specification in a simple asset pricing model the puzzles resurface. However, when estimating

a sequence of increasingly rich models, we find valuation risk under the revised specification

consistently improves the ability of the models to match asset price and cash-flow dynamics.
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1 INTRODUCTION

In standard asset pricing models, uncertainty enters through the supply side of the economy, either
through endowment shocks in a Lucas (1978) model or productivity shocks in a production econ-
omy model. Recently, several influential papers have included time preference shocks or “valuation
risk” as a potential demand side driver of asset prices (Albuquerque et al., 2016, 2015; Basu and
Bundick, 2017; Chen and Yang, 2019; Creal and Wu, 2020; Gomez-Cram and Yaron, 2020; Kliem
and Meyer-Gohde, 2018; Maurer, 2012; Nakata and Tanaka, 2016; Schorfheide et al., 2018).1

The literature argues valuation risk is an important determinant of key asset pricing moments
when embedded in Epstein and Zin (1989) recursive preferences. This paper contributes to the
literature by theoretically and empirically re-examining the role of valuation risk. We first show
the success of valuation risk rests sensitively on the way time preference shocks are introduced. In
particular, we examine two specifications—Current (the specification used in the asset pricing lit-
erature) and Revised (our preferred alternative)—and show they lead to very different conclusions.

Given our theoretical findings, we use a rigorous simulated method of moments estimation
approach to empirically re-evaluate the role of valuation risk in explaining asset pricing and cash-
flow moments. After estimating a sequence of increasingly rich models, we find the role and
contribution of valuation risk change dramatically relative to the literature. However, valuation
risk under the revised specification consistently improves the ability to match moments in the data.

To evaluate the current and revised specifications, we identify four desirable properties of
Epstein-Zin recursive preferences. This provides a practical guide for selecting valuation risk
preferences in macro-finance.2 The first property pertains to comparative risk aversion. It says,
holding all else equal, an increase in the coefficient of relative risk aversion (RA, γ) equates to an
increase in risk aversion. We show this property does not hold when the intertemporal elasticity of
substitution (IES, ψ) is below unity under the current specification. An increase in γ equates to a
decrease, rather than an increase, in aversion to valuation risk, flipping its standard interpretation.3

The second property is that preferences are well-defined with unitary IES. The IES measures
the responsiveness of consumption growth to a change in the real interest rate. An IES of 1 is
a focal point because this is when the substitution and wealth effects of an interest rate change
exactly offset. We show this property does not hold under the current specification in the literature.

The third property is that recursive preferences nest time-separable log-preferences when γ =

1Time preference shocks are commonly referred to as discount factor shocks. The price of an asset is the present
value of its future income stream. Valuation risk refers to the uncertainty households face about how to discount future
income. These shocks have also been widely used in the macro literature (e.g., Christiano et al. (2011); Eggertsson
and Woodford (2003); Justiniano and Primiceri (2008); Rotemberg and Woodford (1997); Smets and Wouters (2003)).

2Identifying a general set of admissible preference specifications that satisfy formal axioms is left to future work.
3The distinction between Epstein and Zin (1989) recursive preferences and constant relative risk aversion (CRRA)

utility is that in the former, ψ and γ are distinct structural parameters, whereas in the latter the parameters are inverses.
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ψ = 1. We show the current specification does not always nest log preferences in this case because
it can even generate extreme curvature and aversion to valuation risk when γ and ψ are close to 1.

The final property is that equilibrium moments are continuous functions of the IES over its
domain. We show there is a discontinuity (or vertical asymptote) under the current specification.
When the IES is marginally above unity, households require an arbitrarily large equity premium
and an arbitrarily small risk-free rate, while an IES marginally below unity predicts the opposite.
This is because the utility function exhibits extreme concavity with respect to valuation risk when
the IES is marginally above unity and extreme convexity when the IES is marginally below unity.4

The discontinuity is relevant because there is a tension between the finance and macroeco-
nomics literatures as to whether the IES lies above or below unity. Setting the IES to 0.5, as is
common in the macroeconomics literature, can inadvertently result in a sizable negative equity pre-
mium.5 Imagine two researchers who want to estimate the IES set the domain to [0, 1) and (1,∞),
respectively. The estimates in the two settings would diverge due to the discontinuity. Therefore,
awareness of these issues is important even if researchers continue to use the current preferences.

In a business cycle context, de Groot et al. (2018) propose a revised Epstein-Zin specifica-
tion for valuation risk in which the time-varying weights in the CES time-aggregator sum to 1, a
restriction the current specification does not impose. This specification satisfies all four desired
properties. There is a well-defined equilibrium when the IES is 1 and asset prices are robust to
small variations in the IES. Continuity is preserved because the weights in the time-aggregator
always sum to unity. Another interpretation is that the time-aggregator maintains the well-known
property that a CES aggregator tends to a Cobb-Douglas aggregator as the elasticity approaches 1.

The change in specification profoundly affects the equilibrium determination of asset prices.
For example, the same RA and IES can lead to very different values for the equity premium and
risk-free rate and comparative statics, such as the response of the equity premium to the IES,
switch sign. Taken at face value, the current specification can resolve the equity premium (Mehra
and Prescott, 1985) and risk-free rate (Weil, 1989) puzzles in an estimated model with i.i.d. cash-
flow risk. Under the revised specification, valuation risk has a smaller role, RA is implausibly
high, and the puzzles resurface. In light of these results, we estimate a sequence of increasingly
rich models to empirically re-evaluate the role of valuation risk under the revised specification.

We begin by estimating the Bansal and Yaron (2004) long-run risk model (without time-varying
uncertainty) without valuation risk and find it significantly under-predicts the standard deviation
of the risk-free rate, even when these moments are targeted. When we introduce valuation risk, it
accounts for roughly 40% of the equity premium, but at the expense of over-predicting the standard

4Kruger (2020) also shows aversion to valuation risk becomes infinite as ψ → 1 under the current specification.
5Hall (1988) and Campbell (1999) provide empirical evidence for an IES close to zero. Basu and Kimball (2002)

find an IES of 0.5 and Smets and Wouters (2007) estimate a value of roughly 0.7. In contrast, van Binsbergen et al.
(2012) and Bansal et al. (2016) estimate models with Epstein-Zin preferences and report IES values of 1.73 and 2.18.
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deviation of the risk-free rate. After targeting the risk-free rate dynamics, valuation risk only ac-
counts for about 5% of the equity premium. Therefore, we find it is crucial to target these dynamics
to accurately measure the contribution of valuation risk. Valuation risk is also able to generate the
upward sloping term structure for real Treasury yields found in the data, whereas cash-flow risk
alone predicts a counterfactually downward sloping term structure. While valuation risk (with or
without the targeted risk-free rate moments) improves the fit of the long-run risk model, the model
still fails a test of over-identifying restrictions. This is because the model fairs poorly in matching
the low predictability of consumption growth from the price-dividend ratio, the high standard de-
viation of dividend growth, and the weak correlation between dividend growth and equity returns.

We consider two extensions that improve the model’s fit: (1) an interaction term between valu-
ation and cash-flow risk (a proxy for general equilibrium demand effects) following Albuquerque
et al. (2016) (henceforth, “Demand” model) and (2) stochastic volatility on cash-flow risk as in
Bansal and Yaron (2004) (henceforth, “SV” model). In a horse race between these extensions, we
find the Demand model wins and passes the over-identifying restrictions test at the 5% level. How-
ever, the two extensions are complements and the combined model passes the test at the 10% level.
This is because the demand extension lowers the correlation between dividend growth and equity
returns, while the SV extension offsets the effect of higher valuation risk on risk-free rate dynam-
ics. Targeting longer-term rates further increases the relative improvement of the combined model.

Related Literature This paper builds on the growing literature that examines the role of valu-
ation risk in asset pricing models. Maurer (2012) and Albuquerque et al. (2016) were the first.
They find valuation risk accounts for key asset pricing moments, such as the equity premium. Al-
buquerque et al. (2016) also focus on resolving the correlation puzzle (Campbell and Cochrane,
1999). Schorfheide et al. (2018) use a Bayesian mixed-frequency approach that targets entire time
series and find valuation risk helps improve the empirical fit, particularly for the risk-free rate.
Gomez-Cram and Yaron (2020) use a similar estimation strategy to show that preference shocks are
important for explaining the nominal yield curve. Both papers use priors for the IES that encom-
pass a unitary elasticity. Creal and Wu (2020) develop a term structure model where valuation risk
is tied to consumption and inflation and does not have an independent stochastic element. Given
an IES estimate close to unity (0.80), they find valuation risk is useful for matching time-variation
in term premia. Nakata and Tanaka (2016) and Kliem and Meyer-Gohde (2018) study term pre-
mia in a New Keynesian model. The former calibrate the IES to 0.11 and generate a negative term
premium, while the latter estimate the IES with a prior in the [0, 1] range and obtain an IES of 0.09.

All of these papers use the current preferences and are potentially affected by the influence
of the asymptote. For example, the papers with an IES estimate below unity find an estimate far
below unity, since an IES close to but below one could generate large negative equity premia as
a result of the asymptote. Furthermore, in studies where the IES is less than unity, an increase in
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the coefficient of relative risk aversion decreases aversion to valuation risk. In this paper, we first
compare estimates based on the current and revised preferences in a simple endowment economy.
We report significant differences in the estimates and contributions of valuation risk. We then use
the revised preferences to estimate a sequence of increasingly rich models of long-run risk to re-
evaluate the role of valuation risk in explaining asset prices. We find valuation risk has a smaller
role in resolving the equity premium and risk-free rate puzzles, but it still plays an important role
in matching particular moments. In related work, Rapach and Tan (2018) and Bianchi et al. (2018)
use the revised specification to estimate real business cycle models. Both papers find valuation risk
has an important role in explaining equity premia when it is interacted with other structural shocks.
In all of these studies, including our own, time preference shocks are latent. Chen and Yang (2019)
go a step further and proxy time preferences shocks using changes in life expectancy in the U.S.6

The paper proceeds as follows. Section 2 lays out desirable properties of recursive preferences
and the consequences of the valuation risk specification. Section 3 discusses asset pricing implica-
tions. Section 4 describes our estimation method. Section 5 quantifies the effects of valuation risk
in our baseline model with i.i.d. cash-flow risk. Section 6 estimates the basic long-run risk model
with and without valuation risk, and Section 7 considers two key extensions. Section 8 concludes.

2 EPSTEIN-ZIN PREFERENCES WITH DISCOUNT FACTOR SHOCKS

2.1 BACKGROUND Epstein and Zin (1989) preferences generalize standard expected utility
time-separable preferences. Current-period utility is defined recursively over current-period con-
sumption, ct, and a certainty equivalent, µt(Ut+1), of next period’s random utility, Ut+1, as follows:

Ut = W (ct, µt(Ut+1)), (1)

where µt ≡ g−1(Etg(Ut+1)), W is the time-aggregator, and g is the risk-aggregator. W and g are
increasing and concave and W and µt are homogenous of degree 1. Note that µt(Ut+1) = Ut+1 if
there is no uncertainty, and µt(Ut+1) ≤ Et[Ut+1] if g is concave and future outcomes are uncertain.
Most of the literature considers the following functional forms for W and g:

g(z) ≡ (z1−γ − 1)/(1− γ), for 1 6= γ > 0, (2)

W (x, y) ≡
(
(1− β)x1−1/ψ + βy1−1/ψ

)1/(1−1/ψ)
, for 1 6= ψ > 0. (3)

When γ = 1, g(z) = log(z) and when ψ = 1, W = x1−βyβ . Therefore, the time-aggregator is

6Two other strands of the literature have interesting connections to our work. One, disaster risk (see Barro, 2009
and Gourio, 2012) can generate variation in the stochastic discount factor analogous to valuation risk. Two, Bansal
et al. (2014), identify “discount rate risk” as a component of risk premia distinct from cash-flow and volatility risks.
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a CES function that converges to a Cobb-Douglas function as ψ → 1.7 It is also common in the
literature to see the time-aggregator written without the (1− β) coefficient on x as follows:

W (x, y) ≡
(
x1−1/ψ + βy1−1/ψ

)1/(1−1/ψ)
. (3’)

In this case, (3’) is undefined when ψ = 1. This is because the weights in the time-aggregator do
not sum to 1. Nevertheless, the exact specification of W does not affect equilibrium behavior.8

Result 1. Utility function (1) with time-aggregator (3) or (3’) represents the same preferences.

Result 1 holds because it is possible to switch between (3) and (3’) with a positive monotonic
transformation that multiplies the utility function by (1 − β)1/(1−1/ψ).9 To see this, note that the
intertemporal marginal rate of substitution (or the stochastic discount factor, SDF) is given by

mt+1 ≡
(
∂Ut
∂ct+1

)/(∂Ut
∂ct

)
= β

(
ct+1

ct

)−1/ψ (
Ut+1

µt (Ut+1)

)1/ψ−γ

. (4)

Since µt is homogenous of degree 1, applying the positive monotonic transformation to Ut+1 in the
numerator and denominator leaves the intertemporal marginal rate of substitution unchanged.10

The results thus far are standard, but they lay the groundwork for the discussion that follows.
Valuation risk involves introducing discount factor shocks—exogenous stochastic time-variation
in β. Whether one works with (3) and replaces both instances of β with atβ (where at is a log-
normal mean zero stationary AR(1) stochastic process) or one works with (3’) and replaces the
only instance of β with atβ is not innocuous, even though one might conclude it is from Result 1.
The specification matters and in what follows we will describe the consequences of these choices.

To determine a preferred specification of valuation risk, we first establish four desirable prop-
erties of standard Epstein-Zin preferences without discount factor shocks, and then assess whether
the two specifications of Epstein-Zin preferences with discount factor shocks satisfy each of them.

Property 1. γ is a measure of comparative risk aversion.

Suppose there are two households, A and B, with Epstein-Zin preferences as defined above.
The two households are identical in every way except in preference parameter γ. If γ measures
risk aversion, then household A is more risk averse than household B if and only if γA > γB.

Property 2. ψ is a measure of the IES and preferences are well defined with unit IES.

7The functional form for g implies µt = (EtU
1−γ
t+1 )1/(1−γ) when γ 6= 1 and µt = exp(Et log(Ut+1)) when γ = 1.

8Kraft and Seifried (2014) prove the continuous-time analog of recursive preferences (stochastic differential utility,
Duffie and Epstein, 1992) is the continuous-time limit of recursive utility if the weights in the time-aggregator sum to 1.

9This is similar to the common practice of writing CRRA utility as u(c) = cα/α instead of u(c) = (cα − 1)/α,
even though the omitted constant term is necessary when proving the limit as α→ 0 is given by u(c) = log(c).

10An equivalent observation is that time-preference is independent of the (1 − β) coefficient. In an environment
without consumption growth and without risk, time-preference is captured by the discount factor (i.e., mt+1 = β).
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The IES is defined as the responsiveness of consumption growth to a change in the real interest
rate. A rise in the real interest rate induces both a substitution effect (consumption today becomes
relatively more expensive, decreasing current consumption) and an income effect (a saver feels
wealthier, increasing current consumption). The substitution and income effects exactly offset
when ψ = 1. Therefore, a unitary IES is an important focal point for any model of preferences.11

Property 3. When γ = ψ = 1, Epstein-Zin preferences are equivalent to time-separable log-

preferences given by Ut = (1− β) log(ct) + βEtUt+1 or, alternatively, Ut = log(ct) + βEtUt+1.

Property 3 is a special case of the more general property that when γ = 1/ψ, Epstein-Zin pref-
erences simplify to standard expected utility time-separable preferences. However, time-separable
log preferences are a staple of economics textbooks, so this provides another useful benchmark.

Property 4. Equilibrium moments are continuous functions of the IES, ψ, over its domain R+.

This final property relates to the discussion of time-aggregator (3) versus (3’). Adopt (3’) and
suppose x = 1 and y > 0. In this case, limψ→1−W = 0 and limψ→1+ W = +∞. Therefore, (3’)
exhibits a discontinuity. However, as discussed, this discontinuity does not affect the intertemporal
marginal rate of substitution, (4), and, as a result, does not materialize in equilibrium moments.

2.2 DISCOUNT FACTOR SHOCKS There are two ways to introduce discount factor shocks into
the Epstein-Zin time-aggregator. The first is denoted the “[C]urrent specification” and given by

WC(x, y, at) ≡
(
(1− β)x1−1/ψ + atβy

1−1/ψ)1/(1−1/ψ) , (3C)

where at > 0. The second is denoted the “[R]evised specification” and given by

WR(x, y, at) ≡
(
(1− atβ)x1−1/ψ + atβy

1−1/ψ)1/(1−1/ψ) , (3R)

where 0 < at < 1/β. The current specification is common. Its use is not surprising since, at face
value, it is the natural extension of discount factor shocks to expected utility time-separable prefer-
ences given by Ut = u(ct)+atβEtUt+1.12 The revised specification extends Epstein and Zin (1991)
to make the discount factor time-varying. Importantly, the two specifications are not equivalent.13

Result 2. Utility function (1) given (3C) does not, in general, reflect the same preferences as (3R).
11A unitary IES is also the basis of the “risk-sensitive” preferences in Hansen and Sargent (2008, Section 14.3).
12Kollmann (2016) introduces a time-varying discount factor into Epstein-Zin preferences in similar way as our re-

vised specification. In that setup, however, the discount factor is a function of endogenously determined consumption.
13The presence of the (1 − β) coefficient in (3C) is irrelevant but we include it for symmetry. The domain of at is

constrained to ensure the time-aggregator weights are always positive. With (3C), at > 0. With (3R), 0 < at < 1/β.
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To demonstrate this result, we show there is no positive monotonic transformation that maps the
two specifications. Define ŨC

t = (1−atβ
1−β )1/(1−1/ψ)UC

t , so the transformed preferences are given by

ŨC
t =

(
(1− atβ)c

1−1/ψ
t + atβµt

(
ã
1/(1−1/ψ)
t+1 ŨC

t+1

)1−1/ψ)1/(1−1/ψ)

, (5)

where ãt+1 ≡ (1− atβ)/(1− at+1β). The revised preferences are given by

UR
t =

(
(1− atβ)c

1−1/ψ
t + atβµt

(
UR
t+1

)1−1/ψ)1/(1−1/ψ)
. (6)

Therefore, the equivalence only exists if at+1 = at for all t. Comparing (5) and (6), there are two
striking features of the current specification. One, it has more risk since ãt+1 introduces additional
variance. Two, it has more curvature in the certainty equivalent since ãt+1 is raised to 1/(1−1/ψ).

To gain further insight, we make a few simplifying assumptions. First, suppose ct+1 = 1 and
∆t+j ≡ ct+j/ct+j−1 = ∆ > 1 for all j ≥ 2. Second, suppose at+j = 1 for j = 0 and j ≥ 2, but
at+1 is a random draw. The terms inside the expectations operators contained in µt are given by

ŪC(at+1) ≡ g(UC
t+1) = g

(
(1− β + at+1βx̄)1/(1−1/ψ)

)
, (7)

ŪR(at+1) ≡ g(UR
t+1) = g

(
(1− at+1β + at+1βx̄)1/(1−1/ψ)

)
, (8)

where x̄ = ∆1−1/ψ(1− β)/(1− β∆1−1/ψ). One source of intuition is to examine the curvature of
(7) and (8) with respect to at+1 by defining an Arrow-Pratt type measure of risk aversion given by

Aj ≡ −(Ū ′′j (at+1)/Ū
′
j(at+1))|at+1=1,

where j ∈ {C,R}. The curvatures of the current and revised specifications are given by

AC =

(
γ − 1/ψ

1− 1/ψ

)
β∆1−1/ψ and AR =

(
γ − 1/ψ

1− 1/ψ

)
β

1− β
(
∆1−1/ψ − 1

)
. (9)

To visualize this, Figure 1 plots state-space indifference curves following Backus et al. (2005).
Suppose there are two equally likely states for at+1 ∈ {a1, a2}. The 45-degree line represents
certainty. We plot (a1, a2) pairs, derived in the Online Appendix, that deliver the same utility as the
certainty equivalent. A convex indifference curve implies aversion with respect to valuation risk.

Result 3. The current specification is at odds with Property 1 when ψ < 1 because increasing γ

reduces aversion to valuation risk. Under the revised specification Property 1 is always satisfied.

Result 3 states that under the current specification, a higher RA can lead to a fall in aversion
to valuation risk (∂AC/∂γ < 0) for ψ < 1. This is shown in the top-row of Figure 1. Under the
current specification with ψ = 0.95, an increase in γ from 0.1 to 3 causes the indifference curve to
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Figure 1: State-space indifference curves. We set β = 0.9975 and ∆ = 1.0015.

become less convex, indicating a decrease in aversion to valuation risk. When ψ = 1.05, the op-
posite occurs. Under the revised specification, ∂AR/∂γ > 0 for all ψ, consistent with Property 1.

Result 4. The current preferences are extremely concave with respect to valuation risk as ψ → 1+,

extremely convex as ψ → 1−, and undefined when ψ = 1, which is at odds with Property 2. In

contrast, the curvature of the revised preferences is continuous and increases only modestly in ψ.

Result 4 states that under the current specification, risk aversion is very sensitive to the calibra-
tion of the IES. This is concerning since Epstein-Zin-type preferences are designed to separate risk
attitudes from timing attitudes. Under the current specification, curvature and hence risk attitudes
are primarily determined by the IES parameter. The revised specification resolves this problem.

One source of intuition is to examine an alternative version of the current specification given by

WA(x, y, at) ≡
(
(1− atβ)x1−1/ψ + βy1−1/ψ

)1/(1−1/ψ)
, (3A)

where at only appears in the first position. A priori, if we accept the current specification, then
(3A) should be an acceptable alternative. The curvature of the alternative specification is given
by AA = −

(
γ−1/ψ
1−1/ψ

)
β

1−β

(
1− β∆1−1/ψ), which has almost the exact opposite properties as AC

8
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because the preferences become extremely convex with respect to valuation risk as ψ → 1+ and ex-
tremely concave as ψ → 1−. SinceAR = AC+AA, the extreme curvature observed in both the cur-
rent and alternative preference specifications broadly cancel out under the revised specification.14

A similar insight can be drawn from Maurer (2012), who introduces two separate shocks in the
Epstein and Zin (1991) preference specification. The first is akin to the shock in (3A) and referred
to as a taste shock, whereas the second is akin to (3C) and referred to as a time-preference shock.
The Online Appendix shows that as the correlation between these two shocks tends to 1, we recover
our revised preference specification. This gives a complementary interpretation of our revised
preference specification as one in which taste and time-preference shocks are perfectly correlated.

Result 5. Suppose γ = 1− ε and 1− 1/ψ = ε2. As ε→ 0, the current specification is at odds with

Property 3, whereas the revised specification converges to Ut = (1− atβ) log ct + atβEtUt+1.

Result 5 summarizes our investigation of Property 3 under valuation risk. If we begin with
log-preferences and introduce discount factor shocks, then Ut = (1 − atβ) log(ct) + atβEtUt+1

or Ut = log(ct) + atβEtUt+1 and there is no curvature with respect to valuation risk (A = 0).
Therefore, when γ = ψ = 1, Epstein-Zin preferences under valuation risk should always reduce
to one of these utility functions and the SDF should reduce to mt+1 ≡ atβ(1−at+1β

1−atβ ) ct
ct+1

or mt+1 ≡
atβ

ct
ct+1

. We show in the Online Appendix that this occurs under the revised specification, but not

under the current specification when ψ approaches 1 at a faster rate than γ. Furthermore, suppose
we calculate the limit as ε → 0, assuming γ = 1 − ε and 1 − 1/ψ = ε2 to ensure ψ converges to
1 at a faster rate than γ. The current specification still exhibits extreme curvature with respect to
valuation risk even though both γ and ψ become arbitrarily close to 1 as in the log-preference case.

3 CONSEQUENCES FOR ASSET PRICING

Thus far, we have described the alternative valuation risk specifications in terms of properties
related to the curvature of the utility function. This section applies these ideas to asset pricing
moments using our baseline asset pricing model and analyzes their consequences for Property 4.

3.1 BASELINE ASSET PRICING MODEL This section describes our baseline model with i.i.d.

cash-flow risk. Later sections will introduce richer features, such as long-run cash-flow risk and
stochastic volatility. We solve each model using a Campbell and Shiller (1988) approximation to
facilitate estimation in the next section. Our theoretical results, however, do not rest on this choice.
The Online Appendix shows the vertical asymptote identified in the current preference specifica-
tion also appears when we derive an exact closed-form solution to the fully nonlinear model.15

14The Online Appendix shows (3A) is isomorphic to (3C) with a small change in the timing of the preference shock.
15Pohl et al. (2018) study the accuracy of Campbell-Shiller approximations for long-run risk asset pricing models.
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Each period t denotes 1 month.16 There are two assets: an endowment share, s1,t, that pays
income, yt, and is in fixed unit supply, and an equity share, s2,t, that pays dividends, dt, and is in
zero net supply. A representative household chooses {ct, s1,t, s2,t}∞t=0 to maximize utility (1) with
time aggregator (3C) or (3R). The choices are constrained by the flow budget constraint given by

ct + py,ts1,t + pd,ts2,t = (py,t + yt)s1,t−1 + (pd,t + dt)s2,t−1, (10)

where py,t and pd,t are the endowment and dividend claim prices. The optimality conditions imply

Et[m
j
t+1ry,t+1] = 1, ry,t+1 ≡ (py,t+1 + yt+1)/py,t, (11)

Et[m
j
t+1rd,t+1] = 1, rd,t+1 ≡ (pd,t+1 + dt+1)/pd,t, (12)

where ry,t+1 and rd,t+1 are the gross returns on the endowment and dividend claims, and

mC
t+1 ≡ aCt β

(
ct+1

ct

)−1/ψ ((UC
t+1)

1−γ

µt(UC
t+1)

)1/ψ−γ

, (13)

mR
t+1 ≡ aRt β

(
1− aRt+1β

1− aRt β

)(
ct+1

ct

)−1/ψ ((UR
t+1)

1−γ

µt(UR
t+1)

)1/ψ−γ

. (14)

To permit an approximate analytical solution, we rewrite the optimality conditions as follows

Et[exp(m̂j
t+1 + r̂y,t+1)] = 1, (15)

Et[exp(m̂j
t+1 + r̂d,t+1)] = 1, (16)

where a hat denotes a log variable. A log-linear approximation of the SDF is given by

m̂j
t+1 = θ log β + θ(ât − ωj ât+1)− (θ/ψ)∆ĉt+1 + (θ − 1)r̂y,t+1, (17)

where θ ≡ (1− γ)/(1− 1/ψ). The second term captures the direct effect of valuation risk on the
stochastic discount factor, where ωC = 0, ωR = β, and ât ≡ âCt ≈ âRt /(1−β). Valuation risk also
has an indirect effect through the return on the endowment. The log preference shock, ât+1, follows

ât+1 = ρaât + σaεa,t+1, 0 ≤ ρa < 1, εa,t+1 ∼ N(0, 1). (18)

The true time preference shocks in (13) and (14) can be recovered by mapping ât into âCt and âRt .
We apply a log-linear approximation to the asset returns to obtain

r̂y,t+1 = κy0 + κy1ẑy,t+1 − ẑy,t + ∆ŷt+1, (19)

r̂d,t+1 = κd0 + κd1ẑd,t+1 − ẑd,t + ∆d̂t+1, (20)

16This frequency is supported by Bansal et al. (2016) who estimate a period is 33 days in a long-run risk model.
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where ẑy,t+1 is the log price-endowment ratio, ẑd,t+1 is the log price-dividend ratio, and

κy0 ≡ log(1 + exp(ẑy))− κy1ẑy, κy1 ≡ exp(ẑy)/(1 + exp(ẑy)), (21)

κd0 ≡ log(1 + exp(ẑd))− κd1ẑd, κd1 ≡ exp(ẑd)/(1 + exp(ẑd)), (22)

are constants that are functions of the steady-state price-endowment and price-dividend ratios.
To close the model, the processes for log-endowment and log-dividend growth are given by

∆ŷt+1 = µy + σyεy,t+1, εy,t+1 ∼ N(0, 1), (23)

∆d̂t+1 = µd + πdyσyεy,t+1 + ψdσyεd,t+1, εd,t+1 ∼ N(0, 1), (24)

where µy and µd are the steady-state growth rates, σy ≥ 0 and ψdσy ≥ 0 are the shock standard
deviations, and πdy determines the covariance between consumption and dividend growth. At this
point, cash-flow growth is i.i.d. Later sections will introduce other empirically relevant features.

The asset market clearing conditions imply s1,t = 1 and s2,t = 0, so the resource constraint
is ĉt = ŷt. Equilibrium includes sequences of prices {m̂t+1, ẑy,t, ẑd,t, r̂y,t+1, r̂d,t+1}∞t=0, quantities
{ĉt}∞t=0, and exogenous variables {∆ŷt+1,∆d̂t+1, ât+1}∞t=0 that satisfy (15)-(20), (23), (24), and the
resource constraint, given the state of the economy, {â0}, and shock sequences, {εy,t, εd,t, εa,t}∞t=1.

We posit the following solutions for the price-endowment and price-dividend ratios:

ẑy,t = ηy0 + ηy1ât, ẑd,t = ηd0 + ηd1ât, (25)

where ẑy = ηy0 and ẑd = ηd0. We apply the method of undetermined coefficients to solve the
log-model. The Online Appendix provides derivations of the solution and equilibrium asset prices.

3.2 ASSET PRICING MOMENTS We begin with a brief discussion of the asset pricing implica-
tions of the model without valuation risk. In particular, we review how Epstein-Zin preferences,
by separating risk attitudes from timing attitudes, aid in matching the risk-free rate and equity pre-
mium. We then compare these moments under the current and revised valuation risk preferences.

3.2.1 CONVENTIONAL MODEL In the original Epstein-Zin preferences, there is no valuation
risk (σa = 0). If, for simplicity, we further assume endowment and dividend risks are perfectly cor-
related (ψd = 0; πdy = 1), then the average risk-free rate and average equity premium are given by

E[r̂f ] = − log β + µy/ψ + ((1/ψ − γ)(1− γ)− γ2)σ2
y/2, (26)

E[ep] = γσ2
y, (27)

where the first term in (26) is the subjective discount factor, the second term accounts for endow-
ment growth, and the third term accounts for precautionary savings. Endowment growth creates an
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incentive for households to borrow in order to smooth consumption. Since both assets are in fixed
supply, the risk-free rate must be elevated to deter borrowing. When the IES, ψ, is high, households
are willing to accept higher consumption growth so the interest rate required to dissuade borrowing
is lower. Therefore, the model requires a fairly high IES to match the low risk-free rate in the data.

With CRRA preferences, higher RA lowers the IES and pushes up the risk-free rate. With
Epstein-Zin preferences, these parameters are independent, so a high IES can lower the risk-free
rate without lowering RA. The equity premium only depends on RA. Therefore, the model gener-
ates a low risk-free rate and modest equity premium with sufficiently high RA and IES parameter
values. Of course, there is an upper bound on what constitute reasonable RA and IES values, which
is the source of the risk-free rate and equity premium puzzles. Other prominent model features such
as long-run risk and stochastic volatility à la Bansal and Yaron (2004) help resolve these puzzles.

3.2.2 VALUATION RISK MODEL COMPARISON We now turn to the model with valuation risk.
Figure 2 plots the average risk-free rate, the average equity premium, and κ1 (i.e., the marginal
response of the price-dividend ratio on the equity return) under both preference specifications.
For simplicity, we remove cash flow risk (σy = 0; µy = µd) and assume the time preference
shocks are i.i.d. (ρa = 0). In this case, the standard deviation of the risk-free rate is common
across the two models and matching the standard deviation of the risk-free rate in the data disci-
plines the parameter σa. Under these assumptions, the assets are identical so (κy0, κy1, ηy0, ηy1) =

(κd0, κd1, ηd0, ηd1) ≡ (κ0, κ1, η0, η1). We plot the results with and without cash-flow growth (µy).
In Figure 2, the current preferences are given by the solid-black (positive endowment growth)

and red-diamond (no endowment growth) lines. In both cases, the average risk-free rate and aver-
age equity premium exhibit a vertical asymptote when the IES is 1. The risk-free rate approaches
positive infinity as the IES approaches 1 from below and negative infinity as the IES approaches 1

from above. The equity premium has the same comparative statics with the opposite sign, except
there is a horizontal asymptote as the IES approaches infinity (see the dashed-dotted black line).

Our results are consistent with Maurer (2012) and Kruger (2020). Maurer (2012) derives the
equity premium and other conditional asset pricing moments in a continuous time version of our
model without approximation. From equation 21 in his paper, it is possible to show that the equity
premium tends to infinity as the IES approaches unity. Kruger (2020) shows the equity premium
tends to infinity as the IES approaches unity because the variance of the SDF explodes. Kruger
proposes alternative preferences where the shock is to current consumption rather than current
utility, but notes that this completely eliminates valuation risk when the the IES is equal to unity.

Analytics provide further insights. Note that the risk premium is proportional to the covariance
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Figure 2: Equilibrium outcomes in the model without cash flow risk (σy = 0; µy = µd) and i.i.d. preference shocks
(ρa = 0) under the current (C) and revised (R) preference specifications. We set β = 0.9975, γ = 10, and σa = 0.005.
Model fit is the squared difference of the mean risk-free rate and mean equity return from their empirical counterparts.
A value of zero is a perfect fit to the data. For both C specifications, the model fit is lowest when the IES equals 1.05.

between the marginal rate of substitution and the asset return. Innovations in the SDF are given by

mt+1 − Etmt+1 = λaσaεa,t+1, (28)

where λa ≡ (θ − 1)κ1η1 is the market price of valuation risk. Innovations in asset returns equal

r̂d,t+1 − Etr̂d,t+1 = κ1η1σaεa,t+1. (29)

The log-price-dividend ratio is given by ẑt = η0+ât, so the loading on the preference shock η1 = 1.
These results show that a positive innovation in εa,t+1 raises the asset return. When the IES

is close to but above 1, (28) shows that a positive εa,t+1 innovation causes an extreme fall in the
marginal rate of substitution. This occurs because of the extreme curvature of the utility function
when the IES is close to but above 1. Thus, the asset performs well in states where the marginal
rate of substitution is low. The opposite holds (i.e., the asset is performing well in states where the
marginal rate of substitution is high) when the IES is close to but below 1. In both cases, when the
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IES is close to 1, the market price of valuation risk, λa, is large and the SDF is extremely volatile.
Making use of these insights, the average risk-free rate and equity premium are given by

E[r̂f ] = − log β + µy/ψ + (θ − 1)κ21η
2
1σ

2
a/2, (30)

E[ep] = (1− θ)κ21η21σ2
a, (31)

Since η1 = 1, when the household becomes more patient and ât rises, the price-dividend ratio
rises one-for-one on impact and returns to the stationary equilibrium in the next period. Since η1 is
independent of the IES, there is no endogenous mechanism that prevents the asymptote in θ from
influencing the risk-free rate or equity premium. θ dominates both of these moments when the IES
is near 1 beause 0 < κ1 < 1. The following result describes the comparative statics with the IES.

Result 6. Suppose γ > 1. The current preference specification is at odds with Property 4. As

ψ → 1+, θ → −∞, so E[r̂f ]→ −∞ and E[ep]→ +∞. As ψ → 1−, θ → +∞, so E[r̂f ]→ +∞
and E[ep]→ −∞.

Therefore, small and reasonable changes in the value of the IES (e.g., from 0.99 to 1.01) can
result in dramatic changes in the predicted values of the average risk free rate and average equity
premium. It also illustrates why valuation risk seems like such an attractive feature for resolving
the risk-free rate and equity premium puzzles. As the IES tends to 1 from above, θ becomes in-
creasingly negative, which dominates other determinants of the risk-free rate and equity premium.
In particular, with an IES slightly above 1, the asymptote in θ causes the average risk-free rate to
become arbitrarily small, while making the average equity premium arbitrarily large. The empirical
implications are evident from the bottom right panel of Figure 2, which shows the model fit based
on the squared difference of the mean risk-free rate and mean equity return from their counterparts
in the data. The model is able to closely match the data with an IES just above 1 (1.05) because
it exploits the amplification from the asymptote. Bizarrely, an IES marginally below 1—a popular
value in the macro literature—generates the opposite predictions: the risk free rate approaches
infinity and the equity premium approaches negative infinity, causing the model fit to deteriorate.
As the IES approaches infinity, 1− θ tends to γ. This shows that even when the IES is far above 1,
the last term in (30) and (31) is scaled by γ and can still have a meaningful effect on asset prices.

In Figure 2, the revised preferences are given by circle-blue (positive endowment growth) and
dashed-black (no endowment growth) lines. In both cases, the average risk-free rate and average
equity premium are continuous in the IES, regardless of µy. When µy = 0, the endowment stream
is constant. This means the household is indifferent about the timing of when the preference
uncertainty is resolved, so both κ1 and the average equity premium are independent of the IES.
When µy > 0, the household’s incentive to smooth consumption interacts with uncertainty about
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how it will value the higher future endowment stream.17 When the IES is large, the household has a
stronger preference for an early resolution of uncertainty, so the equity premium rises as a result of
the valuation risk (see the Figure 2 inset). Therefore, the qualitative relationship between the IES
and the equity premium has different signs under the current and revised specifications. Moreover,
the increase in the equity premium is quantitatively small and converges to a level well below the
value with the current preferences. It is this difference in the sign and magnitude of the relationship
between the IES and the average equity premium that will explain many of our empirical results.

In this case, the market price of valuation risk is given by λa ≡ (θ − 1)κ1η1 − θβ, and

E[r̂f ] = − log β + µy/ψ + ((θ − 1)κ21η
2
1 − θβ2)σ2

a/2, (32)

E[ep] = ((1− θ)κ1η1 + θβ)κ1η1σ
2
a. (33)

Relative to the current specification, η1, is unchanged.18 However, the market price of valuation
risk and both asset prices include a new term that captures the effect of valuation risk on current
utility, so a rise in at that makes the household more patient raises the value of future certainty
equivalent consumption and lowers the value of present consumption. The asymptote occurs under
the current specification because it does not account for the effect of valuation risk on current-
period consumption. With the revised preferences, κ1 = β when ψ = 1, so the terms involving
θ cancel out and the asymptote disappears. As a result, the market price of valuation risk, λa, is
continuous in ψ, and the volatility of the SDF remains modest relative to the current preferences.

Result 7. The revised preferences satisfy Property 4, as λa, E[r̂f ] and E[ep] are continuous in ψ.

When ψ = 1, valuation risk lowers the average risk-free rate by β2σ2
a/2 and raises the average

equity return by the same amount. Therefore, the average equity premium equals β2σ2
a, which is

invariant to the RA parameter. When ψ > 1, κ1 > β, so an increase in RA lowers the risk-free rate
and raises the equity return. As ψ →∞, the equity premium with the revised specification relative
to the current specification equals 1 + β(1 − γ)/(γκ1). This means the disparity between the
predictions of the two models grows as RA increases. As a consequence, the revised preferences
would require much larger RA to generate the same equity premium as the current preferences.

Finally, it is worth emphasizing that Result 7 is not a consequence of any simplifying param-
eter restrictions. Under the revised preferences, an equilibrium solution at ψ = 1 is well defined,
regardless of whether time-preference shocks are persistent (ρa > 0) or the consumption and div-
idend processes are perfectly correlated. The Online Appendix provides a proof of this result.

17Andreasen and Jørgensen (2020) show how to decouple the household’s timing attitude from the RA and IES.
18Notice κ1 is a function of the steady-state price-dividend ratio, zd. When the IES is 1, zd = β/(1− β), which is

equivalent to its value absent any risk. Therefore, when the IES is 1, valuation risk has no effect on the price-dividend
ratio. This result points to a connection with income and substitution effects, which usually cancel when the IES is 1.
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3.3 FURTHER DISCUSSION The previous section shows the current and revised preferences
generate different predictions. This section covers three miscellaneous questions readers may have.

Question 1: Is the valuation risk specification under CRRA preferences important?

Since we have demonstrated that the valuation risk specification is important under Epstein-Zin
preferences, it is worth addressing whether the same is true under CRRA preferences. In particular,
is the choice between Ut = u(ct) + atβEtUt+1 and Ut = (1− atβ)u(ct) + atβEtUt+1 important?
In terms of first-order dynamics, both specifications generate the same impulse response functions
with an appropriate rescaling of σ. The rescaling is by the factor 1− ρaβ, where ρa is unchanged
across the specifications. There is a numerically small difference in E[r̂f ] and E[ep], which is easy
to see by setting θ = 1 in equations (30)-(33). This stems from the conditional expectation of at+1.

Question 2: Are the revised preferences the only alternative?

A potential alternative to the revised specification is the following:

Vt = W (ct, atµt) = [c
1−1/ψ
t + β(atµt)

1−1/ψ]1/(1−1/ψ). (34)

We refer to this specification as “disaster risk” preferences following Gourio (2012). That paper
shows how a term like at can arise endogenously in a production economy asset pricing model.

Technically, since the disaster risk shock affects the certainty equivalent of future utility and
does not alter the time-aggregator, these preferences are consistent with the four desirable proper-
ties described in Section 2. However, they do not represent a household’s intrinsic time preference
uncertainty. To appreciate why, once again set γ = 1/ψ = 1, giving Vt = log ct+log(at)+EtVt+1.
The model reduces to time-separable log-preferences with an additive shock term. As a result at
disappears from any equilibrium condition, so the disaster risk preferences are not able to capture
an exogenous change in the household’s impatience, even though there is no plausible reason why
a household with time-separable log-preferences cannot become more or less patient over time.
This means valuation risk must be linked to time-variation in the discount factor, as in (5) and (6).

Question 3: Is the current specification reasonable if the IES is set far from unity?

Figure 2 shows the current preferences generate counterfactual comparative statics with an IES
near 1. For example, the risk-free rate is increasing in the IES as the influence of the asymptote
wanes. Far from the asymptote, this effect disappears, so the comparative statics of the two spec-
ifications coincide. This could provide a heuristic for deciding whether the current preferences are
reasonable. However, even when the IES is large, the two specifications have different quantita-
tive predictions, and the difference is increasing in γ. As such, it is not possible to define an IES
threshold for which the asymptote will no longer matter. When the IES is high in Figure 2, the eq-
uity premium is around 0.3 under the current preferences and near 0 under the revised preferences.
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Beyond these differences, the properties in Section 2 do not provide any further guidance on the
reasonableness of the current specification when the IES is large. Epstein et al. (2014) call for more
experimental evidence to discipline preferences in asset pricing models. This is a similar situation.
Theory suggests that the current preferences produce counterintuitive results, but future experimen-
tal work is needed to provide additional evidence that helps discipline models with valuation risk.

4 DATA AND ESTIMATION METHODS

We construct our data using the procedure in Bansal and Yaron (2004), Beeler and Campbell
(2012), Bansal et al. (2016), and Schorfheide et al. (2018). The moments are based on seven time
series from 1929 to 2017: real per capita consumption expenditures on nondurables and services,
the real equity return, real dividends, the real risk-free rate, the price-dividend ratio, and the real
5- and 20-year U.S. Treasury yields. Nominal equity returns are calculated with the CRSP value-
weighted return on stocks. We obtain data with and without dividends to back out a time series for
nominal dividends. Both series are converted to real series using the consumer price index (CPI).

The nominal risk-free rate is based on the CRSP yield-to-maturity on 90-day Treasury bills.
We first convert the nominal time series to a real series using the CPI. Then we construct an ex-

ante real rate by regressing the ex-post real rate on the nominal rate and annual inflation rate three
month ahead. The data on personal consumption expenditures is annual. To match this frequency,
the monthly asset pricing data are converted to annual time series using the last month of each year.

The estimation procedure has two stages. The first stage estimates our mean target moments,
Ψ̂D
T , using a two-step Generalized Method of Moments (GMM) estimator, where T = 87 is the

sample size.19 Conditional on Ψ̂D
T , the second stage estimates the parameters of our structural

model with a Simulated Method of Moments (SMM) procedure. For parameterization θ and shocks
ET = [εy,t, εd,t, εa,t]

T
t=1, we solve the model and simulate itR = 1,000 times for T periods. This al-

lows us to compute the mean moments across theR simulations, Ψ̄M
R,T (θ, E) = 1

R

∑R
r=1 ΨM

T (θ, Er).
The parameter estimates, θ̂, are obtained by minimizing the following loss function:

J(θ, E) = [Ψ̂D
T − Ψ̄M

R,T (θ, E)]′[Σ̂D
T (1 + 1/R)]−1[Ψ̂D

T − Ψ̄M
R,T (θ, E)],

where Σ̂D
T is the diagonal of the GMM estimate of the variance-covariance matrix.20 A bootstrap

procedure is used to calculate the standard errors on the parameters.21 Specifically, we run our
SMM algorithm Ns = 500 times, each time conditional on a particular sequence of shocks Es but

19In total, there are 89 periods in our sample, but we lose one period for growth rates and one for serial correlations.
20For the revised preferences, we impose the restriction β exp(4(1 − β)

√
σ2
a/(1− ρ2a)) < 1 when estimating the

model parameters. This ensures the time-aggregator weights are positive in 99.997% of the simulated observations.
21Ruge-Murcia (2012) applies SMM to several nonlinear business cycle models and finds that asymptotic standard

errors tend to overstate the variability of the estimates. In the conclusion, he acknowledges that “[a] possible way to
address the limitations of asymptotic theory would be to use the bootstrap to construct accurate confidence intervals.”
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holding fixed the empirical targets, Ψ̂D
T , and weighting matrix, Σ̂D

T , in the loss function. Given the
set of parameter estimates {θ̂s}Nss=1, we report the mean, θ̄ =

∑Ns
s=1 θ̂

s/Ns, and (5, 95) percentiles.22

This method has two benefits. First, it provides more reliable estimates of the standard errors than
using the asymptotic variance of the estimator, which is commonly used in the literature. Second,
it makes it possible to determine whether the estimation method has settled on a global optimum.
Appendix A describes our data sources and the Online Appendix outlines our estimation algorithm.

The baseline model targets 15 moments: the means and standard deviations of consumption
growth, dividend growth, equity returns, the risk-free rate, and the price-dividend ratio, the correla-
tion between dividend growth and consumption growth, the autocorrelations of the price-dividend
ratio and risk-free rate, and the cross-correlations of consumption growth, dividend growth, and eq-
uity returns. These targets are common in the literature and the same as Albuquerque et al. (2016),
except we exclude 5- and 10-year correlations between equity returns and cash-flow growth. We
omit the long-run correlations to allow a longer sample that includes the Great Depression period.

Real Yields TIPS-Implied Yields

E[rf,5] E[rf,20] E[rf,5] E[rf,20]

0.30 1.62 0.43 1.35
(0.23) (0.19) (0.29) (0.20)

Table 1: Comparison of long-term yields using data from 2004-2017. Standard errors are shown in parentheses.

We also show the empirical performance of our model when we target the real return on 5- and
20-year Treasury bonds. Since longer-term assets are more sensitive to time preference shocks,
the real yield curve could help identify the time preference shock parameters. In the literature,
there is no widely accepted method for removing inflation risk from nominal yields. To facilitate
comparison, we follow the procedure in Albuquerque et al. (2016). We obtain the intermediate and
long-term nominal Treasury yields from Morningstar Direct (formerly Ibbotson Associates). We
then convert to real yields by regressing the ex-post real long-term rate on the nominal rate and 12-
month ahead inflation rate. A common alternative approach is to use treasury inflation protected
securities (TIPS). Table 1 shows both methods produce a similar upward sloping yield curve. We
decided to use the regression-based approach because TIPS data is only available since 2004.23

22The practice of re-estimating with different sequences of shocks follows the recommendation of Fabio Canova
(see http://apps.eui.eu/Personal/Canova/Teachingmaterial/Smm_eui2014.pdf, slide 16).

23A third option used in parts of the literature (see, for example, Creal and Wu (2020) and Gomez-Cram and Yaron
(2020)) is to estimate an exogenous equation for inflation dynamics and fit the model to nominal yield curve data.
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5 ESTIMATED BASELINE MODEL

This section takes the baseline model from Section 3.1 and compares the estimates from the current
and revised preference specifications. We fix the IES to 2.5, which is near the upper end of the
plausible range of values in the literature.24 This restriction helps us compare the estimates from
the two preference specifications because the model fit, as measured by the J value, is insensitive
to the value of the IES in the revised specification, but the unconstrained global minimum prefers
an implausibly high IES. For example, the J value is only one decimal point lower with an IES
equal to 10. Therefore, we are left with estimating nine parameters to match 17 empirical targets.

Omits E[rf,5] & E[rf,20] All Moments

Ptr Current Revised Max RA Current Revised Max RA

γ 1.58 75.11 10.00 1.41 98.44 10.00
(1.55, 1.60) (73.68, 76.56) (10.00, 10.00) (1.38, 1.43) (97.09, 99.68) (10.00, 10.00)

β 0.9977 0.9956 0.9973 0.9979 0.9963 0.9978
(0.9976, 0.9978) (0.9956, 0.9957) (0.9972, 0.9973) (0.9978, 0.9980) (0.9963, 0.9964) (0.9977, 0.9978)

ρa 0.9969 0.9903 0.9882 0.9974 0.9897 0.9882
(0.9968, 0.9970) (0.9902, 0.9904) (0.9881, 0.9884) (0.9973, 0.9975) (0.9896, 0.9898) (0.9880, 0.9883)

σa 0.00030 0.03482 0.03828 0.00027 0.03592 0.03841
(0.00029, 0.00030) (0.03461, 0.03502) (0.03807, 0.03846) (0.00026, 0.00027) (0.03573, 0.03609) (0.03822, 0.03861)

µy 0.0016 0.0016 0.0017 0.0016 0.0017 0.0016
(0.0016, 0.0016) (0.0016, 0.0016) (0.0017, 0.0017) (0.0016, 0.0016) (0.0016, 0.0017) (0.0016, 0.0016)

µd 0.0015 0.0021 0.0010 0.0010 0.0017 0.0005
(0.0015, 0.0015) (0.0021, 0.0021) (0.0009, 0.0010) (0.0010, 0.0010) (0.0016, 0.0017) (0.0005, 0.0005)

σy 0.0058 0.0057 0.0058 0.0058 0.0055 0.0060
(0.0057, 0.0058) (0.0057, 0.0058) (0.0058, 0.0059) (0.0058, 0.0058) (0.0055, 0.0056) (0.0059, 0.0060)

ψd 1.51 0.96 1.07 1.49 1.12 1.02
(1.47, 1.55) (0.92, 1.00) (1.04, 1.11) (1.45, 1.53) (1.09, 1.14) (0.99, 1.05)

πdy 0.811 0.431 0.616 0.809 0.606 0.604
(0.785, 0.840) (0.415, 0.446) (0.594, 0.639) (0.783, 0.838) (0.595, 0.617) (0.583, 0.629)

J 28.63 47.63 55.47 30.81 49.67 59.22
(28.03, 29.30) (47.37, 47.91) (55.04, 55.89) (30.22, 31.46) (49.37, 49.99) (58.89, 59.57)

pval 0.000 0.000 0.000 0.000 0.000 0.000
(0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000)

df 6 6 6 8 8 8

Table 2: Baseline model. Average and (5, 95) percentiles of the parameter estimates. The IES is 2.5.

Table 2 shows the parameter estimates and Table 3 reports the data and model-implied moments
for six variants of our baseline model: with and without targeting the yield curve (5- and 20-year
average risk-free bond yields); with the current preferences; and with the revised preferences,
with and without an upper bound on RA. For each parameter, we report the average and (5, 95)

percentiles across 500 estimations of the model. For each moment, we provide the mean and
t-statistic for the null hypothesis that a model-implied moment equals its empirical counterpart.

We begin with the model that excludes the yield curve moments. In both specifications, the
data prefers a very persistent valuation risk process with ρa > 0.98. Given the estimates for ρa and

24Estimation results with ψ = 1.5 and ψ = 2.0 for each specification considered below are in the Online Appendix.
In total, we estimate 54 variants of our model. Since each variant is estimated 500 times, there are 27,000 estimations.
The estimations are run in Fortran and the time per estimation ranges from 1-24 hours depending on model complexity.

19



DE GROOT, RICHTER & THROCKMORTON: VALUATION RISK REVALUED

Omits E[rf,5] & E[rf,20] All Moments

Moment Data Current Revised Max RA Current Revised Max RA

E[∆c] 1.89 1.89 1.94 2.01 1.89 1.98 1.96
(0.00) (0.20) (0.49) (0.00) (0.37) (0.27)

E[∆d] 1.47 1.79 2.50 1.17 1.22 1.99 0.59
(0.33) (1.07) (−0.31) (−0.26) (0.54) (−0.92)

E[zd] 3.42 3.45 3.49 3.56 3.49 3.53 3.60
(0.24) (0.49) (1.04) (0.49) (0.76) (1.29)

E[rd] 6.51 5.60 5.62 4.06 5.05 5.00 3.38
(−0.57) (−0.55) (−1.53) (−0.91) (−0.94) (−1.96)

E[rf ] 0.25 0.25 0.37 1.09 0.12 0.26 0.45
(0.00) (0.19) (1.37) (−0.22) (0.01) (0.32)

E[rf,5] 1.19 1.21 1.74 2.18 0.91 1.22 1.51
(0.03) (0.81) (1.45) (−0.41) (0.04) (0.46)

E[rf,20] 1.88 3.10 3.50 3.32 2.53 2.30 2.63
(2.04) (2.70) (2.40) (1.08) (0.71) (1.25)

SD[∆c] 1.99 1.99 1.99 2.00 2.00 1.91 2.07
(0.00) (−0.02) (0.01) (0.01) (−0.16) (0.16)

SD[∆d] 11.09 3.42 2.10 2.48 3.39 2.43 2.45
(−2.80) (−3.29) (−3.15) (−2.82) (−3.16) (−3.16)

SD[rd] 19.15 17.96 13.49 13.29 17.99 13.31 12.97
(−0.63) (−2.98) (−3.09) (−0.61) (−3.08) (−3.26)

SD[rf ] 2.72 3.25 3.68 3.85 3.04 3.68 3.74
(1.04) (1.88) (2.22) (0.62) (1.88) (2.01)

SD[zd] 0.45 0.48 0.26 0.23 0.50 0.25 0.23
(0.44) (−3.07) (−3.43) (0.73) (−3.24) (−3.53)

AC[rf ] 0.68 0.94 0.89 0.88 0.94 0.89 0.88
(4.00) (3.28) (3.06) (4.05) (3.21) (3.05)

AC[zd] 0.89 0.91 0.84 0.82 0.91 0.84 0.82
(0.42) (−0.99) (−1.44) (0.52) (−1.14) (−1.46)

Corr[∆c,∆d] 0.54 0.47 0.41 0.49 0.48 0.48 0.51
(−0.32) (−0.62) (−0.20) (−0.30) (−0.30) (−0.14)

Corr[∆c, rd] 0.05 0.09 0.06 0.09 0.09 0.09 0.09
(0.58) (0.22) (0.62) (0.58) (0.54) (0.67)

Corr[∆d, rd] 0.07 0.19 0.15 0.18 0.18 0.18 0.19
(1.42) (1.01) (1.38) (1.39) (1.33) (1.41)

Table 3: Baseline model. Data and average model-implied moments. t-statistics are in parentheses.

σa, the volatility of the actual time-preference shocks is the same order of magnitude across the
two specifications (SD(âCt ) = SD(ât) = 0.38% and SD(âRt ) ≈ (1− β)SD(ât) = 0.12%). In the
current specification, the risk aversion parameter, γ, is 1.58. In the revised specification γ = 75.11,
which is well outside what is considered acceptable in the asset pricing literature.25 Both specifica-
tions generate a sizable equity premium (the estimates are about 1% lower than the empirical equity
premium) and a near zero risk-free rate. However, they significantly under-predict the standard de-
viation of dividend growth and over-predict the autocorrelation of the risk-free rate in the data.26

25Mehra and Prescott (1985, p. 154) say “Any of the above cited studies. . . constitute an a priori justification for
restricting the value of [RA] to be a maximum of ten, as we do in this study.” Weil (1989, p. 411) describes γ = 40 as
“implausibly” high. Swanson (2012) shows γ does not equate to risk aversion when households have a labor margin.
Therefore, only in production economies can γ be reasonably above 10, where it is common to see values around 100.

26The estimate of the valuation risk shock standard deviation, σa, is two orders of magnitude larger in the revised
specification than the current specification. Recall that the valuation risk term in the SDF is given by ât−ωât+1. When
the valuation risk shock is i.i.d., the estimates of the shock standard deviation are very similar. However, as the persis-
tence increases with the revised preferences, SDt[ât − ωât+1] shrinks, so σa rises to compensate for the extra term.
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Using the analytical expressions for the average risk-free rate and average equity premium (see
E.15 and E.16 in the Online Appendix), it is possible to break down the fraction of each moment
explained by cash-flow and valuation risk.27 With the current specification valuation risk explains
98.9% and 99.2% of the risk-free rate and the equity premium, whereas with the revised preferences
it explains only 63.2% and 79.2%. Since the estimate of the cash-flow shock standard deviation is
unchanged, cash-flow risk has a bigger role in explaining the equity premium due to higher RA.

The revised specification has a significantly poorer fit than the current specification (J = 47.6

vs. J = 28.6), although both specifications fail the over-identifying restrictions test. The poorer fit
is mostly due to the model significantly over-predicting the volatility of the risk-free rate and under-
predicting the volatilities of the price-dividend ratio and equity return. The intuition is as follows.
In the revised specification, risk-free rate volatility is relatively more sensitive to valuation risk
than equity return volatility. Since the volatility of equity returns is higher than the volatility of the
risk-free rate in the data, valuation risk alone does not allow the model to match these moments.
Dividend growth volatility, however, cannot rise to compensate for the lack of the equity return
volatility because the target correlation between equity returns and dividend growth is near zero.

The revised preferences not only have a worse fit, but the risk aversion parameter is implausibly
large. When we restrict γ to a maximum of 10—the upper end of the values used in the asset pricing
literature—the fit deteriorates further (J = 55.5 vs. 47.6). The primary source of the poorer fit is
the larger estimate of the risk-free rate (1.1% vs. 0.4%) and lower equity return (4.1% vs. 5.6%).

Intuition suggests that valuation risk should also be informative about the long-term risk-free
interest rates, not just the short-term rate. When longer-term moments are omitted from the es-
timation routine, both preferences over-predict the slope of the yield curve (E[rf,20] − E[rf ] is
2.8% and 3.1% for the current and revised preferences, relative to the 1.6% in the data). Once the
yield curve moments are included, however, the slopes fall to 2.4% and 2.0%, respectively. For
the revised preferences, this flattening of the yield curve is generated by a rise in RA. Overall, the
inclusion of these moments worsens the fit of the model but does not materially change the results.

The results in Tables 2 and 3 demonstrate that the valuation risk specification matters empiri-
cally. Figure 3 provides a broader comparison of the two specifications to highlight the properties
of the current specification around the asymptote at ψ = 1. Conditional on different degrees of risk
aversion (γ), we report the model fit and selected parameters from re-estimating the model for a
range of IES values.28 The influence of the asymptote under the current preferences is immediately
apparent. As the IES approaches 1 from either direction, the model fit rapidly deteriorates.29 The

27The mean risk-free rate is given by E[r̂f,t] = α1 + α2σ
2
a + α3σ

2
y and the mean equity premium is given by

E[ept] = α4σ
2
a + α5σ

2
y for some function of model parameters αi, i ∈ {1, . . . , 5}. Therefore, the contribution of

valuation risk to the risk-free rate and equity premium is given by α2σ
2
a/(α2σ

2
a + α3σ

2
y) and α4σ

2
a/(α4σ

2
a + α5σ

2
y).

28We also conducted this exercise without fixing γ. In this case, the data prefers a γ extremely close to 1 to eliminate
the influence of the asymptote when ψ is near 1. Fixing γ allows us to highlight the implications of the asymptote.

29As shown in Figure 2, the model fit could improve as the IES approaches 1 because the algorithm exploits the
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Figure 3: Baseline model estimates as a function of the IES.

estimation compensates for the influence of the asymptote by reducing the standard deviations of
the time-preference shocks (σa) and cash flow shocks (ψd and πdy). In contrast, both the model fit
and equilibrium outcomes are continuous with respect to the IES under the revised preferences.

Importantly, a modest increase in risk aversion under the current preferences causes the asymp-
tote to have a wider influence: the model fit is uniformly worse for a given IES and there is an effect
on model outcomes for IES values further away from 1. This shows the influence of the asymptote
even when the IES is well above 1. A priori, the researcher does not know the sensitivity of the
asymptote to the degree of risk aversion. Conditional on a given set of parameter estimates, it is dif-
ficult to determine whether equilibrium outcomes are an artifact of the data or driven by the asymp-
tote. The revised preferences eliminate this problem by removing the asymptote from the model.

The current preferences also exhibit comparative statics that are counterintuitive relative to the
Epstein-Zin asset pricing literature. The Epstein-Zin literature tells us that as the IES increases,
agents demand a larger equity premium. In order to match the equity premium in the data, we
should therefore expect an estimation with a higher IES to compensate with less exogenous volatil-
ity (i.e., a lower σa, σy, and πdy). The revised preferences generate this intuitive comparative static
result. Under the current preferences, the exogenous volatility is increasing in the IES for ψ > 1,

asymptote. Whether the asymptote causes the model fit to improve or deteriorate is model and estimation dependent.
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because the estimation needs to compensate for the waning influence of the asymptote. Given the
potential influence of the asymptote on equilibrium outcomes, the rest of the paper concentrates on
the revised specification when examining the role of valuation risk in richer asset pricing models.

6 ESTIMATED LONG-RUN RISK MODEL

Long-run risk provides a well-known resolution to many asset pricing puzzles. This section intro-
duces this feature into our baseline model and re-examines the marginal contribution of valuation
risk with the revised preferences. To introduce long-run risk, we modify (23) and (24) as follows:

∆ŷt+1 = µy + x̂t + σyεy,t+1, εy,t+1 ∼ N(0, 1), (35)

∆d̂t+1 = µd + φdx̂t + πdyσyεy,t+1 + ψdσyεd,t+1, εd,t+1 ∼ N(0, 1), (36)

x̂t+1 = ρxx̂t + ψxσyεx,t+1, εx,t+1 ∼ N(0, 1), (37)

where the specification of the persistent component, x̂t, follows Bansal and Yaron (2004). We
apply the same estimation procedure as the baseline model, except there are three additional pa-
rameters, φd, ρx, and ψx. We also match up to five additional moments: the autocorrelations of
consumption growth, dividend growth, and the equity return and two predictability moments—the
correlations of consumption growth and the equity premium with the lagged price-dividend ratio.

The long-run risk model also prefers a high IES even though it does not significantly lower the
J value. As a result, we continue to set the IES to 2.5 and estimate the remaining parameters. The
parameter estimates are shown in Table 4 and the data and model-implied moments are reported in
Table 5. The tables show the results for six variants of the model: with and without targeting both
the yield curve and higher-order risk-free rate moments; with and without targeting the yield curve
but always including higher-order risk-free rate moments; and with and without valuation risk.

We begin with the model without valuation risk and without the yield curve and risk-free rate
moments (column 1). This is a typical model estimated in the literature. The model fails to pass the
over-identifying restrictions test at the 5% level, signalling that the standard long-run risk model
is insufficient to adequately describe the behavior of asset prices and cash flows. The parameter
estimates are similar to the estimates in the literature. In particular, the data requires a small but
very persistent shock that generates risk in long-run cash-flow growth (ρx = 0.9986; ψx = 0.0265).

The literature typically excludes the standard deviation and autocorrelation of the risk-free rate
when estimating the long-run risk model because the model does not generate sufficient volatility
(a standard deviation of 0.53 vs. 2.72 in the data) and over-predicts the autocorrelation (0.95 vs.
0.68 in the data). Even when these two moments are targeted, as shown in column 3, long-run
cash-flow risk is unable to significantly improve on these moments (the standard deviation rises to
0.70 and the autocorrelation falls to 0.94). The standard long-run risk model also fairs poorly on
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Omits SD[rf ], AC[rf ], Omits All Moments
E[rf,5], & E[rf,20] E[rf,5] & E[rf,20]

Parameter No VR Revised No VR Revised No VR Revised

γ 2.74 2.52 2.84 2.63 2.59 2.37
(2.64, 2.84) (2.41, 2.67) (2.69, 2.95) (2.53, 2.76) (2.38, 2.76) (2.27, 2.50)

β 0.9991 0.9980 0.9990 0.9989 0.9985 0.9985
(0.9990, 0.9991) (0.9979, 0.9981) (0.9990, 0.9991) (0.9989, 0.9990) (0.9985, 0.9986) (0.9985, 0.9985)

ρa − 0.9813 − 0.9563 − 0.9584
(0.9806, 0.9820) (0.9554, 0.9570) (0.9575, 0.9592)

σa − 0.0481 − 0.0169 − 0.0178
(0.0473, 0.0491) (0.0167, 0.0172) (0.0175, 0.0181)

µy 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016
(0.0015, 0.0017) (0.0014, 0.0017) (0.0015, 0.0016) (0.0015, 0.0017) (0.0015, 0.0016) (0.0015, 0.0017)

µd 0.0012 0.0011 0.0014 0.0012 0.0012 0.0010
(0.0010, 0.0014) (0.0009, 0.0014) (0.0012, 0.0016) (0.0010, 0.0014) (0.0010, 0.0014) (0.0008, 0.0013)

σy 0.0039 0.0039 0.0047 0.0039 0.0045 0.0037
(0.0039, 0.0040) (0.0038, 0.0040) (0.0047, 0.0047) (0.0039, 0.0040) (0.0044, 0.0045) (0.0037, 0.0037)

ψd 3.39 2.73 3.17 3.27 3.30 3.40
(3.31, 3.46) (2.63, 2.84) (3.09, 3.22) (3.19, 3.35) (3.18, 3.40) (3.32, 3.49)

πdy 0.595 0.926 0.029 0.710 0.122 0.832
(0.496, 0.676) (0.854, 0.999) (−0.098, 0.146) (0.623, 0.781) (−0.033, 0.267) (0.752, 0.903)

φd 2.39 1.43 2.24 2.22 2.39 2.33
(2.30, 2.48) (1.38, 1.50) (2.14, 2.33) (2.14, 2.32) (2.24, 2.53) (2.24, 2.42)

ρx 0.9986 0.9995 0.9974 0.9988 0.9974 0.9989
(0.9985, 0.9987) (0.9995, 0.9995) (0.9971, 0.9977) (0.9987, 0.9990) (0.9970, 0.9979) (0.9988, 0.9991)

ψx 0.0267 0.0265 0.0327 0.0261 0.0314 0.0253
(0.0261, 0.0273) (0.0258, 0.0273) (0.0318, 0.0335) (0.0255, 0.0268) (0.0304, 0.0323) (0.0247, 0.0259)

J 20.72 13.34 54.99 19.60 61.74 24.42
(20.10, 21.38) (13.12, 13.56) (54.24, 55.84) (19.06, 20.14) (61.03, 62.53) (23.88, 24.93)

pval 0.008 0.038 0.000 0.012 0.000 0.007
(0.006, 0.010) (0.035, 0.041) (0.000, 0.000) (0.010, 0.015) (0.000, 0.000) (0.005, 0.008)

df 8 6 10 8 12 10

Table 4: Long-run risk model. Average and (5, 95) percentiles of the parameter estimates. The IES is 2.5.

three additional moments: (1) the standard deviation of dividend growth (too low), (2) the corre-
lation between dividend growth and the return on equity (too high), and (3) the predictability of
consumption growth (too high). All of them are significantly different from their empirical targets.

Adding valuation risk (columns 2 and 4) significantly improves the fit of the model. With the
restricted set of moments, the J value declines from 20.7 to 13.3. More importantly, the p-value
from the over-identifying restrictions test rises from 0.01 to 0.04, even though the valuation risk
model contains two more parameters than the standard model (6 degrees of freedom instead of 8).

Unlike cash-flow risk, valuation risk directly affects the time-series properties of the risk-free
rate, which makes it important to target these moments in the estimation. In column 2, the model
includes valuation risk but targets neither the standard deviation nor the autocorrelation of the risk-
free rate. As a result, the estimated model significantly over-predicts both moments (the standard
deviation is 5.64 vs. 2.72 in the data and the autocorrelation is 0.83 vs. 0.68 in the data). How-
ever, once these moments are targeted in the estimation (column 4), the standard deviation of the
risk-free rate is 2.83 and the autocorrelation of the risk-free rate is 0.69, consistent with the data.

In both columns 2 and 4, the model closely matches the mean risk-free rate and equity return.

24



DE GROOT, RICHTER & THROCKMORTON: VALUATION RISK REVALUED

Omits SD[rf ], AC[rf ], Omits All Moments
E[rf,5], & E[rf,20] E[rf,5] & E[rf,20]

Moment Data No VR Revised No VR Revised No VR Revised

E[∆c] 1.89 1.88 1.89 1.88 1.89 1.89 1.89
(−0.01) (0.01) (−0.02) (0.00) (0.00) (0.01)

E[∆d] 1.47 1.50 1.36 1.68 1.43 1.48 1.25
(0.03) (−0.12) (0.22) (−0.04) (0.00) (−0.23)

E[zd] 3.42 3.42 3.42 3.41 3.42 3.42 3.43
(−0.03) (−0.05) (−0.08) (−0.01) (0.01) (0.06)

E[rd] 6.51 6.44 6.92 5.91 6.61 5.69 6.55
(−0.05) (0.26) (−0.37) (0.06) (−0.51) (0.02)

E[rf ] 0.25 0.27 0.27 0.27 0.25 1.39 1.20
(0.03) (0.03) (0.03) (0.00) (1.87) (1.55)

E[rf,5] 1.19 0.12 1.03 0.06 0.25 1.24 1.25
(−1.58) (−0.24) (−1.68) (−1.39) (0.07) (0.09)

E[rf,20] 1.88 −0.29 1.01 −0.50 −0.13 0.83 0.98
(−3.61) (−1.44) (−3.95) (−3.34) (−1.74) (−1.49)

SD[∆c] 1.99 1.93 2.02 2.41 1.92 2.24 1.79
(−0.14) (0.05) (0.87) (−0.14) (0.52) (−0.43)

SD[∆d] 11.09 5.72 4.49 6.54 5.47 6.43 5.35
(−1.96) (−2.41) (−1.66) (−2.05) (−1.70) (−2.10)

SD[rd] 19.15 17.74 19.34 18.69 17.71 18.72 17.71
(−0.74) (0.10) (−0.24) (−0.76) (−0.23) (−0.76)

SD[rf ] 2.72 0.53 5.64 0.70 2.83 0.64 2.93
(−4.32) (5.76) (−3.99) (0.22) (−4.11) (0.41)

SD[zd] 0.45 0.55 0.46 0.52 0.54 0.53 0.54
(1.54) (0.17) (1.14) (1.40) (1.19) (1.43)

AC[∆c] 0.53 0.43 0.47 0.48 0.43 0.46 0.42
(−1.06) (−0.67) (−0.60) (−1.06) (−0.77) (−1.17)

AC[∆d] 0.19 0.28 0.20 0.33 0.27 0.32 0.26
(0.87) (0.07) (1.28) (0.72) (1.24) (0.65)

AC[rd] −0.01 0.00 −0.05 0.00 −0.01 0.00 −0.01
(0.15) (−0.46) (0.07) (0.00) (0.07) (0.01)

AC[rf ] 0.68 0.95 0.83 0.94 0.69 0.94 0.70
(4.17) (2.35) (4.05) (0.16) (4.06) (0.30)

AC[zd] 0.89 0.93 0.88 0.91 0.92 0.91 0.92
(0.76) (−0.11) (0.51) (0.70) (0.52) (0.71)

Corr[∆c,∆d] 0.54 0.48 0.53 0.43 0.49 0.44 0.50
(−0.27) (−0.05) (−0.52) (−0.20) (−0.49) (−0.16)

Corr[∆c, rd] 0.05 0.07 0.05 0.08 0.06 0.08 0.06
(0.31) (0.08) (0.53) (0.24) (0.53) (0.21)

Corr[∆d, rd] 0.07 0.24 0.18 0.28 0.23 0.28 0.22
(2.09) (1.33) (2.60) (1.93) (2.53) (1.85)

Corr[ep, zd,−1] −0.16 −0.16 −0.13 −0.13 −0.17 −0.13 −0.17
(0.00) (0.32) (0.37) (−0.03) (0.36) (−0.07)

Corr[∆c, zd,−1] 0.19 0.65 0.58 0.68 0.65 0.67 0.64
(2.62) (2.20) (2.81) (2.60) (2.74) (2.55)

Table 5: Long-run risk model. Data and average model-implied moments. t-statistics are in parentheses.

However, the contribution of valuation risk is quite different across the various sets of moments.
Recall that in the baseline model, valuation risk explains a sizable majority of the risk-free rate
and equity premium.30 In column 2, valuation risk has a smaller but still meaningful contribution
(49.4% of the risk-free rate and 42.3% of the equity premium). In column 4, however, it explains

30The contribution of valuation risk under the current preferences is larger than under the revised preferences. In the
model without the higher-order risk-free rate or term structure moments, valuation risk under the current preferences
explains 91.5% of the risk-free rate and 91.1% of the equity premium. If only the term structure moments are excluded,
valuation risk explains a smaller percentage but it is still bigger than with the revised preferences (31.2% and 18.7%).
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very little of these moments (9.4% and 5.4%) because the model requires smaller and less persistent
valuation risk shocks (ρa = 0.9563 and σa = 0.0169) to match the dynamics of the risk-free rate.

Finally, we turn to the yield curve. In columns 1 and 3, which exclude valuation risk and do
not target longer-term risk-free rates, the presence of cash-flow risk generates a (counterfactual)
downward sloping yield curve. This is because households in the model dislike long-run risks
to cash-flow growth and longer-term risk-free bonds provide additional insurance against these
risks. Valuation risk, however, generates a positive term premium for longer-term risk-free bonds
because it creates the possibility that households will revalue future cash flows. A longer-term
asset increases exposure to this risk. This results in a lower price and higher return for risk-free
assets with a longer maturity, leading to an upward sloping yield curve. In columns 2 and 4, which
add valuation risk, the yield curve is humped shaped due to the competing effects of the two risks.

The failure of the long-run risk model to predict an upward sloping yield curve is not resolved
by targeting the yield curve moments. In column 5, which excludes valuation risk but targets the
yield curve moments, the yield curve remains downward sloping. However, the entire curve is
raised, resulting in a short-term risk free rate of 1.4%. The addition of valuation risk (column
6) improves the slope of the yield curve, lowering E[rf ] by 19 basis points and raising E[rf,20]

by 15 basis points. However, the constraints imposed by also targeting the standard deviation and
autocorrelation of the risk-free rate limit the role of valuation risk in fully matching the yield curve.

These results show that valuation risk does not unilaterally resolve the risk-free rate and equity
premium puzzles, but the improvements in fit show that it helps match the data. Despite these
improvements, the long-run risk model with valuation risk still performs poorly on the three mo-
ments listed above as well as the yield curve. Furthermore, all six specifications fail to pass the
over-identifying restrictions test at the 5% level. The next section addresses these shortcomings.

7 ESTIMATED EXTENDED LONG-RUN RISK MODEL

We consider two extensions to the long-run risk model. First, we allow valuation risk shocks to
directly affect cash-flow growth, in addition to their effect on asset prices through the SDF (hence-
forth, the “Demand” shock model). This feature is similar to a discount factor shock in a production
economy model. For example, in the workhorse New Keynesian model, an increase in the discount
factor looks like a negative demand shock that lowers interest rates, inflation, and consumption.31

Therefore, it provides another mechanism for valuation risk to help fit the data, especially the

31See, for example, Smets and Wouters (2003). However, without a carefully microfounded model, it is not clear
whether εa,t+1 should be correlated with ∆ŷt+1 or x̂t (or both) and what restrictions should be placed on the shock
coefficients. While there are limitations to using this reduced-form specification, it is very useful for informing what
description of the shock processes best explain the data and for developing models with deeper microfoundations.
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correlation moments. Following Albuquerque et al. (2016), we modify (35) and (36) as follows:

∆ŷt+1 = µy + x̂t + σyεy,t+1 + πyaσaεa,t+1, (38)

∆d̂t+1 = µd + φdx̂t + πdaσaεa,t+1, (39)

where πya and πda control the covariances between valuation risk shocks and cash-flow growth.32

Second, we add stochastic volatility to cash-flow risk following Bansal and Yaron (2004)
(henceforth, the “SV” model). SV introduces time-varying uncertainty. Bansal et al. (2016) show
SV leads to a significant improvement in fit. An important question is therefore whether the pres-
ence of SV will affect the role of valuation risk. To introduce SV, we modify (35)-(37) as follows:

∆ŷt+1 = µy + x̂t + σy,tεy,t+1, (40)

∆d̂t+1 = µd + φdx̂t + πdyσy,tεy,t+1 + ψdσy,tεd,t+1, (41)

x̂t+1 = ρxx̂t + ψxσy,tεx,t+1, (42)

σ2
y,t+1 = σ2

y + ρσy(σ
2
y,t − σ2

y) + νyεσy ,t+1, (43)

where ρσy is the persistence of the SV process and νy is the standard deviation of the SV shock.
Table 6 and Table 7 present estimates from three versions of the extended long-run risk model:

(1) the SV model without valuation risk (columns 1 and 4), (2) the demand shock model (columns
2 and 5), and (3) the combination of the demand shock and SV models (columns 3 and 6). In each
case, we report the results from including and excluding longer-term rates as targeted moments.

We begin with the models that exclude longer-term returns as targeted moments.33 A key find-
ing is that all three extensions improve on the p-values from the simpler long-run risk models in
the previous section. Adding SV to the model without valuation risk increases the p-value from
near zero (Table 4, column 3) to 0.02 (Table 6, column 1). The estimated SV process is very per-
sistent (ρσy = 0.9646) and the shock is statistically significant, consistent with the literature. The
improved fit largely occurs because SV helps match the higher-order risk-free rate moments (the
standard deviation is 2.44 vs. 2.72 in the data and the autocorrelation is 0.69 vs. 0.68 in the data).

The Demand model increases the p-value from 0.012 (Table 4, column 4) to 0.098 (Table 6,
column 2). Thus, the Demand model easily passes the over-identifying restrictions test at the 5%

level. Consistent with the predictions of a production economy model, πya and πda are negative in
the estimation. More specifically, a positive valuation risk shock, which makes households more
patient, reduces consumption and dividend growth. In a direct horse race between the SV model

32With the inclusion of πya and πda, πdy and ψd are redundant so we exclude them from the Demand specifications.
33The No VR+SV model is the same model BKY estimate. In that paper, the model passes the over-identifying

restrictions test at the 5% level, while in our case it does not. The key difference is that BKY do not target the
correlations between cash-flows and the equity return. When we exclude these moments, our p-value jumps to 0.15.
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Omits E[rf,5] & E[rf,20] All Moments

Ptr No VR+SV Demand Demand+SV No VR+SV Demand Demand+SV

γ 2.67 3.39 6.31 1.25 3.59 8.51
(2.61, 2.73) (3.28, 3.49) (5.84, 6.84) (1.09, 1.46) (3.46, 3.74) (8.17, 8.87)

β 0.9983 0.9991 0.9981 0.9982 0.9987 0.9976
(0.9982, 0.9983) (0.9990, 0.9991) (0.9980, 0.9982) (0.9981, 0.9983) (0.9987, 0.9988) (0.9976, 0.9977)

ρa − 0.9608 0.9933 − 0.9630 0.9934
(0.9600, 0.9615) (0.9931, 0.9935) (0.9622, 0.9637) (0.9933, 0.9936)

σa − 0.0188 0.0289 − 0.0197 0.0286
(0.0185, 0.0191) (0.0285, 0.0293) (0.0193, 0.0200) (0.0283, 0.0289)

µy 0.0016 0.0015 0.0016 0.0016 0.0016 0.0016
(0.0015, 0.0017) (0.0015, 0.0016) (0.0015, 0.0016) (0.0015, 0.0018) (0.0015, 0.0016) (0.0015, 0.0016)

µd 0.0013 0.0015 0.0015 0.0000 0.0013 0.0015
(0.0011, 0.0015) (0.0013, 0.0016) (0.0014, 0.0017) (0.0000, 0.0001) (0.0012, 0.0015) (0.0013, 0.0016)

σy 0.0003 0.0040 0.0000 0.0002 0.0036 0.0000
(0.0002, 0.0003) (0.0039, 0.0040) (0.0000, 0.0001) (0.0000, 0.0004) (0.0036, 0.0036) (0.0000, 0.0000)

ψd 3.04 − − 2.79 − −
(2.97, 3.10) (2.73, 2.86)

πdy 0.788 − − 0.961 − −
(0.691, 0.881) (0.858, 1.051)

φd 1.91 2.76 2.86 1.69 3.30 2.97
(1.86, 1.95) (2.68, 2.83) (2.78, 2.95) (1.65, 1.72) (3.21, 3.38) (2.93, 3.01)

ρx 0.9989 0.9972 0.9955 0.9995 0.9967 0.9953
(0.9988, 0.9990) (0.9970, 0.9974) (0.9953, 0.9958) (0.9995, 0.9995) (0.9965, 0.9968) (0.9951, 0.9955)

ψx 0.0270 0.0309 0.0376 0.0258 0.0309 0.0375
(0.0263, 0.0277) (0.0303, 0.0315) (0.0367, 0.0386) (0.0250, 0.0265) (0.0303, 0.0315) (0.0366, 0.0384)

πya − −0.049 −0.049 − −0.033 −0.044
(−0.053, −0.046) (−0.051, −0.047) (−0.036, −0.030) (−0.046, −0.042)

πda − −1.021 −0.864 − −0.997 −0.884
(−1.036, −1.007) (−0.876, −0.853) (−1.010, −0.983) (−0.896, −0.873)

ρσy
0.9646 − 0.8324 0.9609 − 0.5861

(0.9633, 0.9658) (0.7939, 0.8606) (0.9577, 0.9638) (0.5455, 0.6234)

νy 1.2e−5 − 2.2e−5 1.3e−5 − 3.3e−5
(1.1e−5, 1.2e−5) (2.0e−5, 2.4e−5) (1.2e−5, 1.4e−5) (3.2e−5, 3.4e−5)

J 18.25 13.43 8.88 25.30 18.27 9.72
(17.76, 18.75) (13.03, 13.85) (8.64, 9.13) (24.61, 26.08) (17.90, 18.66) (9.41, 10.03)

pval 0.020 0.098 0.180 0.005 0.051 0.285
(0.016, 0.023) (0.086, 0.111) (0.166, 0.195) (0.004, 0.006) (0.045, 0.057) (0.263, 0.309)

df 8 8 6 10 10 8

Table 6: Extended long-run risk models. Average and (5, 95) percentiles of the parameter estimates. The IES is 2.5.

and the Demand model, which have the same number of parameters, the Demand model wins. The
superior fit of the Demand model comes from the fact that it better matches the high volatility of
dividend growth and the low correlation between dividend growth and equity returns. The model
is better able to match these moments because the volatility of dividend growth increases with πda
while partially offsetting the positive relationship between valuation risk and the return on equity.

The Demand+SV model (column 3) raises the p-value to 0.18, passing the over-identifying
restrictions test at the 10% level. This result reveals that the two extensions to the long-run risk
model are complements, rather than substitutes, which is not obvious a priori because both features
help match risk-free rate dynamics. It also occurs even though the two additional parameters in the
model reduce the degrees of freedom and the critical value for the over-identifying restrictions test.
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Omits E[rf,5] & E[rf,20] All Moments

Moment Data No VR+SV Demand Demand+SV No VR+SV Demand Demand+SV

E[∆c] 1.89 1.91 1.85 1.89 1.96 1.89 1.91
(0.07) (−0.14) (0.01) (0.27) (0.02) (0.10)

E[∆d] 1.47 1.54 1.75 1.83 0.02 1.59 1.78
(0.07) (0.28) (0.38) (−1.51) (0.12) (0.32)

E[zd] 3.42 3.42 3.40 3.40 3.52 3.41 3.40
(−0.05) (−0.14) (−0.19) (0.69) (−0.06) (−0.17)

E[rd] 6.51 6.80 5.92 5.75 6.64 5.60 5.70
(0.18) (−0.37) (−0.48) (0.08) (−0.57) (−0.51)

E[rf ] 0.25 0.08 0.43 0.20 0.80 1.21 0.31
(−0.28) (0.29) (−0.08) (0.90) (1.57) (0.08)

E[rf,5] 1.19 −0.81 0.39 0.55 1.46 1.25 1.42
(−2.96) (−1.19) (−0.95) (0.39) (0.08) (0.34)

E[rf,20] 1.88 −2.24 −0.02 0.39 1.40 0.97 1.58
(−6.84) (−3.16) (−2.46) (−0.78) (−1.51) (−0.49)

SD[∆c] 1.99 2.07 1.99 2.08 2.12 1.76 2.09
(0.16) (0.00) (0.18) (0.27) (−0.49) (0.20)

SD[∆d] 11.09 5.35 7.71 9.65 5.07 7.90 9.83
(−2.10) (−1.24) (−0.53) (−2.20) (−1.17) (−0.46)

SD[rd] 19.15 18.24 18.03 18.52 17.17 18.39 18.39
(−0.48) (−0.59) (−0.33) (−1.04) (−0.40) (−0.40)

SD[rf ] 2.72 2.44 2.99 2.70 2.72 3.06 2.64
(−0.55) (0.53) (−0.04) (−0.01) (0.66) (−0.17)

SD[zd] 0.45 0.52 0.51 0.48 0.55 0.50 0.49
(1.16) (0.94) (0.52) (1.66) (0.80) (0.66)

AC[∆c] 0.53 0.45 0.43 0.45 0.45 0.42 0.45
(−0.92) (−1.07) (−0.89) (−0.93) (−1.22) (−0.90)

AC[∆d] 0.19 0.25 0.22 0.17 0.23 0.23 0.18
(0.56) (0.28) (−0.20) (0.37) (0.32) (−0.14)

AC[rd] −0.01 −0.04 0.02 −0.04 0.03 0.01 −0.01
(−0.31) (0.32) (−0.33) (0.48) (0.30) (0.02)

AC[rf ] 0.68 0.69 0.72 0.70 0.67 0.72 0.71
(0.09) (0.51) (0.24) (−0.25) (0.66) (0.37)

AC[zd] 0.89 0.91 0.91 0.89 0.93 0.91 0.90
(0.44) (0.51) (0.08) (0.82) (0.40) (0.18)

Corr[∆c,∆d] 0.54 0.51 0.48 0.52 0.54 0.45 0.50
(−0.13) (−0.27) (−0.08) (0.03) (−0.43) (−0.16)

Corr[∆c, rd] 0.05 0.06 0.10 0.11 0.05 0.10 0.11
(0.20) (0.67) (0.84) (−0.01) (0.71) (0.91)

Corr[∆d, rd] 0.07 0.22 0.14 0.06 0.20 0.13 0.06
(1.77) (0.80) (−0.08) (1.61) (0.76) (−0.14)

Corr[ep, zd,−1] −0.16 −0.23 −0.13 −0.12 −0.23 −0.12 −0.11
(−0.64) (0.37) (0.44) (−0.64) (0.47) (0.61)

Corr[∆c, zd,−1] 0.19 0.65 0.65 0.62 0.66 0.64 0.61
(2.60) (2.62) (2.42) (2.65) (2.56) (2.42)

Table 7: Extended long-run risk models. Data and average model-implied moments. t-statistics are in parentheses.

The model continues to fail on one key moment: the predictability of consumption growth
given the price dividend ratio (i.e., Corr[∆c, zd,−1]) remains too high (0.62 vs. 0.19 in the data).
The overall improvement in fit occurs because the Demand+SV model does a much better job
matching dividend growth dynamics. Specifically, it better matches the standard deviation of div-
idend growth (9.65 vs. 11.09 in the data) and the weak correlation between dividend growth and
equity returns (0.06 vs. 0.07 in the data). In this model, valuation risk has a bigger role than in the
Demand model (ρa = 0.993 vs. ρa = 0.961; σa = 0.0289 vs. σa = 0.0188), while the SV process
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is not as persistent (ρσy = 0.832 vs. ρσy = 0.965) as in the No VR+SV model. Also, σy is signif-
icantly smaller, so the contribution of consumption growth volatility from pure endowment risk is
smaller when compared to the Demand model. The Demand model has trouble matching dividend
growth dynamics while simultaneously matching risk-free rate dynamics. An expanded role of
valuation risk is crucial for matching dividend growth dynamics. Without SV, this is not possible
because it would cause the model to miss on the risk-free rate dynamics. Introducing SV, however,
permits a lower σy, which helps offset the effect of valuation risk on the risk-free rate dynamics.

In terms of the yield curve, the No VR+SV and Demand models both improve on this dimen-
sion. Once the long-term rates are targeted, the yield curve slope (i.e., E[rf,20]−E[rf ]) rises from
−2.3% to 0.6% with the No VR+SV model (column 4) and from −0.4% to −0.2% with the De-
mand model (column 5). However, in both cases, the yield curve is hump-shaped and the addition
of the yield curve moments decreases the p-values. The Demand+SV model performs the best. The
p-value rises from 0.18% (column 3) to 0.29% (column 6) and the yield curve is no longer hump-
shaped. All three yield curve moments are insignificantly different from their data counterparts.

8 CONCLUSION

Although valuation risk has become the subject of a substantial body of research to address asset
pricing puzzles, the literature has ignored the full implications of the current preference specifi-
cation. This paper first documents four desirable properties of Epstein-Zin recursive preferences
without valuation risk. It then shows the current valuation risk specification is at odds with these
properties because the distributional weights in the time-aggregator of the utility function do not
sum to 1. In contrast, our revised preferences, which restrict the distributional weights, satisfy all
four properties. These results caution against using the current specification.

Under our revised preferences, valuation risk has a much smaller role in resolving the equity
premium and risk-free rate puzzles. However, we find valuation risk still plays an important role in
matching the standard deviation and autocorrelation of the risk-free rate as well as the yield curve.
Furthermore, allowing valuation risk to directly affect cash-flow growth, similar to a production
economy model, adds a source of volatility that significantly improves the empirical fit of the model
and helps match the standard deviation of dividend growth and its correlation with equity returns.

Despite the importance of valuation risk, our paper and the literature is silent on its structural
foundations. As a consequence, there are several open research questions. For example, what does
it mean for a representative household to have a time-varying time-preference? Is there an economy
with multiple (heterogenous) households that supports these preferences? Is there a decision-
theoretic explanation and is it possible to back out the dynamics of a time-varying time-preference
from experiments or data? We believe these questions are important avenues for future research.
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A DATA SOURCES

We drew from the following data sources to estimate our models:

1. [RCONS] Per Capita Real PCE (excluding durables): Annual, chained 2012 dollars.
Source: Bureau of Economic Analysis, National Income and Product Accounts, Table 7.1.

2. [RETD] Value-Weighted Return (including dividends): Monthly. Source: Wharton Re-
search Data Services, CRSP Stock Market Indexes (CRSP ID: VWRETD).

3. [RETX] Value-Weighted Return (excluding dividends): Monthly. Source: Wharton Re-
search Data Services, CRSP Stock Market Indexes (CRSP ID: VWRETX).

4. [CPI] Consumer Price Index for All Urban Consumers: Monthly, not seasonally ad-
justed, index 1982-1984=100. Source: Bureau of Labor Statistics (FRED ID: CPIAUCNS).

5. [RFR] Risk-free Rate: Monthly, annualized yield calculated from nominal price. Source:
Wharton Research Data Services, CRSP Treasuries, Risk-free Series (CRSP ID: TMYTM).

6. [RFR5] 5-year U.S. Treasury Yield: Monthly, intermediate-term, annualized. Source:
Ibbotson Associates via Morningstar Direct, IA SBBI US IT (ID: FOUSA05XQC).
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7. [RFR20] 20-year U.S. Treasury Yield: Monthly, long-term, annualized. Source: Ibbotson
Associates via Morningstar Direct, IA SBBI US LT (ID: FOUSA05XQ8).

We applied the following transformations to the above data sources:

1. Annual Per Capita Real Consumption Growth (annual frequency):

∆ĉt = 100 log(RCONSt/RCONSt−1)

2. Annual Real Dividend Growth (monthly frequency):

P1928M1 = 100, Pt = Pt−1(1 +RETXt), Dt = (RETDt −RETXt)Pt−1,

dt =
∑t

i=t−11Di/CPIt, ∆d̂t = 100 log(dt/dt−12)

3. Annual Real Equity Return (monthly frequency):

πmt = log(CPIt/CPIt−1), r̂d,t = 100
∑t

i=t−11(log(1 +RETDi)− πmi )

4. Annual Real Risk-free Rate (monthly frequency):

rfrt = RFRt − log(CPIt+3/CPIt), πqt = log(CPIt/CPIt−12)/4,

r̂f,t = 400(β̂0 + β̂1RFRt + β̂2π
q
t ),

where β̂j are OLS estimates from regressing the quarterly ex-post real rate, rfr, on the quar-
terly nominal rate, RFR, and inflation, πq. The fitted values estimate the ex-ante real rate.

5. 5- and 20-year Real Risk-free Rate (monthly frequency):

rfrXt = RFRXt − log(CPIt+12/CPIt), πat = log(CPIt/CPIt−12),

r̂f,X,t = 100(β̂0 + β̂1RFRXt + β̂2π
a
t ),

where β̂j are the OLS estimates from regressing the annual ex-post real long-term rate, rfr5
or rfr20, on the annual nominal rate, RFR5 or RFR20, and inflation, πa. The fitted values
estimate the ex-ante real long-term rate. The ex-ante real rates are similar if they are con-
structed by regressing on average annual inflation over the maturity of the bond. We opted
to use 12-month ahead inflation rates to maintain our balanced sample that extends to 2017.

6. Price-Dividend Ratio (monthly frequency):

ẑd,t = log(Pt/
∑t

i=t−11Di)

We use December of each year to convert each of the monthly time series to an annual frequency.
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