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stant returns to scale matching function to derive conditions that determine how the cyclicality

of the matching elasticity amplifies or dampens nonlinear labor market dynamics. It then shows

that modest cyclical variation in the matching elasticity, in line with the recent estimates, gen-

erates large differences in higher-order moments and has significant effects on optimal policy.

Keywords: Matching Function; Matching Elasticity; Nonlinear; Finding Rate; Unemployment

JEL Classifications: E24; E32; E37; J63; J64

∗Bernstein, Department of Economics, Indiana University, 100 S. Woodlawn, Bloomington, IN 47405 (jm-
bernst@iu.edu); Richter, Research Department, Federal Reserve Bank of Dallas, 2200 N Pearl Street, Dallas, TX
75201 (alex.richter@dal.frb.org); Throckmorton, Department of Economics, William & Mary, P.O. Box 8795,
Williamsburg, VA 23187 (nat@wm.edu). We thank Nicolas Petrosky-Nadeau for his discussion at the 2022 American
Economic Association Meeting. We also thank Domenico Ferraro, Emily Moschini, and Francesco Zanetti for com-
ments that helped improve the paper. This work was supported by computational resources provided by the BigTex
High Performance Computing Group at the Federal Reserve Bank of Dallas. The views expressed in this paper are
our own and do not necessarily reflect the views of the Federal Reserve Bank of Dallas or the Federal Reserve System.



BERNSTEIN, RICHTER & THROCKMORTON: MATCHING FUNCTION

1 INTRODUCTION

The matching function—the mapping from job seekers and vacancies into matches—is a core
component of search and matching models. In particular, the elasticity of matches with respect
to vacancies, which we refer to as the matching elasticity, is a key object in empirical and struc-
tural work. While it is common to use a Cobb-Douglas matching function in structural models, its
constant matching elasticity is a knife-edge case that is unlikely to hold empirically. By relaxing
that assumption, this paper shows that modest variation in the matching elasticity has significant
positive and normative implications for the nonlinear properties of the search and matching model.

To motivate our analysis, we first review the extensive empirical literature that estimates the
matching elasticity. Although most of this work imposes the typical Cobb-Douglas specification,
the wide range of estimates suggests that a fixed matching elasticity does not provide the best de-
scription of the data. Furthermore, Lange and Papageorgiou (2020) non-parametrically estimate
the matching function and find support for a procyclical elasticity that fluctuates between 0.15 and
0.3. This motivates us to characterize the nonlinear effects of a general constant returns to scale
matching function without a priori restrictions on the mean or cyclicality of the matching elasticity.

A simple example demonstrates how cyclical variation in the matching elasticity affects nonlin-
ear labor market dynamics. Consider a positive productivity shock that causes firms to post more
vacancies, increasing match creation and the job finding rate. A procyclical matching elasticity am-
plifies this transmission, while a countercyclical elasticity dampens it. The opposite applies to the
transmission of a negative shock, which is dampened by a procyclical elastcity and amplified by a
countercyclical elasticity. Therefore, a cyclical matching elasticity will asymmetrically amplify or
dampen the transmission of positive and negative shocks, creating a source of nonlinear dynamics.

Our analytical results uncover simple conditions that characterize the strength of the asymmetry
and only depend on the matching elasticity and the elasticity of substitution between vacancies and
job seekers. Importantly, we show that the elasticity of substitution governs the cyclicality of the
matching elasticity. Higher substitutability dampens the diminishing returns to vacancy creation.
When this effect is sufficiently strong, the matching elasticity is increasing in vacancy creation and
procyclical. Therefore, higher substitutability in the matching process tends to amplify positive
shocks and dampen negative shocks, while lower substitutability leads to the opposite asymmetry.

To quantify the mechanism, we impose the constant elasticity of substitution (CES) functional
form, which nests the Cobb-Douglas specification. We find that modest cyclical variation in the
matching elasticity, in line with Lange and Papageorgiou’s estimates, generates large differences in
higher-order business cycle moments. For example, when holding the standard deviation of the un-
employment rate fixed, switching from countercyclical to procyclical variation lowers the skewness
of the unemployment rate from 2.37 to 0.29, offsetting the asymmetry in the law of motion for em-
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ployment and nearly eliminating the nonlinear labor market dynamics emphasized in the literature.
Finally, we derive the normative implications of a general matching function, thus extending the

well-known results for the Cobb-Douglas specification. Away from this knife-edge case where the
matching elasticity is constant, we show that the cyclicality of the matching elasticity qualitatively
affects the cyclicality of the vacancy tax that alleviates the externalities endemic to the frictional
matching process. In addition, the differences in the nonlinear unemployment dynamics that we
document across different matching functions transmit to consumption and hence to cyclical move-
ments in the efficient real interest rate, which is a key ingredient of optimal monetary policy design.
Understanding the true matching function is crucial for the conduct of optimal policy interventions.

Related Literature Our contribution is to analytically uncover a general mechanism through
which the matching function generates nonlinearities in the search and matching model, and to
quantify its positive and normative implications. Our results complement a growing literature that
uses the search and matching model to analyze business cycle asymmetries and nonlinearities (e.g.,
Abbritti and Fahr, 2013; Dupraz et al., 2019; Ferraro, 2018; Ferraro and Fiori, 2021; Petrosky-
Nadeau and Zhang, 2017; Petrosky-Nadeau et al., 2018; Pizzinelli et al., 2020). While these papers
use a specific matching function and focus on other mechanisms, we show the matching function
itself is a powerful source of nonlinear dynamics. In light of the uncertainty surrounding the true
matching function and the recent empirical estimates, our results emphasize the need to consider
alternative specifications when assessing a model’s ability to produce nonlinear features of the data.

The matching function specification also has significant normative implications. Hairault et al.
(2010) and Jung and Kuester (2011) study how nonlinearities in the search and matching model af-
fect the welfare cost of business cycles. While they derive conditions that determine how the shape
of the job finding rate function affects welfare, they do not uncover the underlying mechanism,
which we show depends on offsetting effects that the Cobb-Douglas restriction obscures. Several
papers have also examined how nonlinear search and matching frictions affect optimal policy, but
only under a Cobb-Douglas matching function (e.g., Arseneau and Chugh, 2012; Faia, 2009; Jung
and Kuester, 2015; Lepetit, 2020). We show the matching function itself has meaningful effects on
the efficiency-restoring fiscal policies and the responses of the efficient real interest rate to shocks.

Our analysis also sheds light on the properties of the matching function introduced by Den Haan
et al. (2000), which is used in influential papers such as Hagedorn and Manovskii (2008) and
Petrosky-Nadeau et al. (2018).1 While that specification has been used interchangeably with the
Cobb-Douglas matching function,2 we show they have different nonlinear properties. In contrast

1Bernstein et al. (2021), Ferraro (2018), Hashimzade and Ortigueira (2005), and Petrosky-Nadeau and Zhang
(2017, 2021) also use this matching function. Stevens (2007) provides a microfoundation for such a matching function.

2When comparing the Cobb-Douglas and Den Haan et al. (2000) matching functions Petrosky-Nadeau and Wasmer
(2017) say the “business cycle moments of the model using either functional form are similar.” The justification for
using the Den Haan et al. (2000) specification is that it restricts the job filling and job finding rates to the unit interval.
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with the estimates in Lange and Papageorgiou (2020), the Den Haan et al. (2000) specification gen-
erates countercyclical variation in the matching elasticity that introduces concavity in the job find-
ing rate and amplifies nonlinear labor market dynamics relative to the Cobb-Douglas specification.

Outline The rest of the paper proceeds as follows. Section 2 provides an overview of the key prop-
erties of the matching function and the empirical estimates of the matching elasticity. Section 3 lays
out our search and matching model. Section 4 derives a closed-form solution and characterizes the
sources of nonlinearity. Section 5 quantifies the nonlinearities and their effects on labor market dy-
namics. Section 6 shows the normative implications of the matching function. Section 7 concludes.

2 OVERVIEW OF MATCHING FUNCTIONS

To motivate our analytical and quantitative exercises, we briefly discuss some useful theoretical
properties of matching functions and review the associated empirical literature that estimates them.
We consider matching functions of the formM(ust , vt), where ust measures the search effort of job
seekers (often counts of unemployed workers) and vt measures the recruitment effort of employ-
ers (often counts of vacancy postings). Throughout, we assume M(ust , vt) is strictly increasing,
strictly concave, and twice differentiable in both arguments, and exhibits constant returns to scale
(see Petrongolo and Pissarides (2001) for an overview of the evidence supporting constant returns).

A key object of theoretical and empirical interest is the elasticity of matches with respect to va-
cancies, which we denote by εt =Mv(u

s
t , vt)vt/M(ust , vt) and refer to as the matching elasticity.

We note that due to constant returns to scale, the matching elasticity depends only on labor market
tightness, θt = vt/u

s
t , and lies in the unit interval: ε(θt) = Mv(1, θt)θt/M(1, θt) ∈ (0, 1). Al-

though some papers in the literature focus on the matching elasticity with respect to search effort,
constant returns to scale also implies thatMu(u

s
t , vt)u

s
t/M(ust , vt) = 1−Mv(u

s
t , vt)vt/M(ust , vt).

The goal of this paper is to uncover how the statistical properties of the matching elasticity
(e.g., its mean, standard deviation, and cyclicality) affect nonlinear dynamics, given their recent
emphasis in the search and matching literature. The following result establishes a benchmark that
applies when restricting attention to linear models. All of the proofs are contained in Appendix A.

Proposition 1. To first order, any constant returns to scale matching function is equivalent to a

Cobb-Douglas matching function,M(ust , vt) = φ(ust)
1−ε̄vε̄t , where ε̄ is a fixed matching elasticity.

The Cobb-Douglas matching function is a common assumption in business cycle research.3 It
imposes that the matching elasticity is invariant to labor market conditions. Proposition 1 shows
that when we restrict attention to linear dynamics, this assumption is without loss of generality.
Intuitively, in a linear model, only the value of the matching elasticity in the deterministic steady
state affects dynamics. This value can be set as a parameter of a Cobb-Douglas matching function.

3See, for example, Ljungqvist and Sargent (2017), Hall and Milgrom (2008), Pissarides (2009), and Shimer (2005).
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In this paper, we depart from the special linear case and shed light on the higher-order positive
and normative consequences of the matching function. To lay the foundations, we first establish
how the matching elasticity in general varies with labor market conditions, as measured by labor
market tightness. To do so, it is useful to define the elasticity of substitution between vacancies
and job seekers, σt =

d ln(vt/ust )

d ln(Mu(ust ,vt)/Mv(ust ,vt))
∈ (0,∞), which also only depends on labor market

tightness due to constant returns to scale in the matching function: σ(θt) = d ln θt
d ln(Mu(1,θt)/Mv(1,θt))

.

Proposition 2. The matching elasticity, εt = ε(θt), is increasing in θt when σt = σ(θt) > 1,

constant when σt = 1, and decreasing when σt < 1.

Recall that the matching elasticity is the marginal product of labor market tightness divided
by the average product: ε(θt) = Mv(1, θt)/(M(1, θt)/θt). The effects of tightness on each term
drive the matching elasticity in opposite directions. First, the average product is decreasing in
tightness because a 1% increase in tightness yields a less than 1% increase in matches. This causes
the matching elasticity to increase. Second, the marginal product is decreasing in tightness due to
diminishing returns to vacancy creation. This causes the matching elasticity to decrease. The domi-
nant effect depends on how quickly the marginal product declines, which is governed by the elastic-
ity of substitution. When σ(θt) > 1, high substitutability between vacancies and job seekers slows
the decline in the marginal product, so the first effect dominates and ε(θt) is increasing in tightness.

Proposition 2 uncovers a tight relationship between variation in the matching elasticity and the
elasticity of substitution that applies to a general matching function. We obtain further structure if
we are willing to impose a functional form on the matching function. For example, it is common to
assume the matching function is Cobb-Douglas, which is a special case of the general CES family,

M(ust , v
s
t ) =

φ
(
ϑ(ust)

(σ−1)/σ(1− ϑ)v
(σ−1)/σ
t

)σ/(σ−1)

σ 6= 1,

φ(ust)
ϑv1−ϑ

t σ = 1,

where φ > 0 is matching efficiency and ϑ ∈ (0, 1) is the importance of job seekers. Under this
specification, the elasticity of substitution, σ(θt) = σ, is fixed and we can strengthen Proposition 2.

Corollary 1. Suppose the matching function is from the CES family. Then σ > 1 implies ε′(θt) > 0,

σ = 1 implies ε′(θt) = 0, and σ < 1 implies ε′(θt) < 0 for all θt > 0.

Since tightness is procyclical in the data and in search and matching models, the choice of σ
globally affects the cyclicality of the matching elasticity. When σ = 1, the matching function is
Cobb-Douglas, and the matching elasticity is constant, εt = ε̄ = 1 − ϑ. Away from this special
case, higher substitutability (σ > 1) generates procyclical variation in the matching elasticity, while
lower substitutability (σ < 1) implies countercyclical variation. Our analytical and quantitative ex-
ercises will shed light on how the cyclicality of εt translates into nonlinear labor market dynamics.
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Author(s) Method(s) Sample Parameter Estimates

Cobb-Douglas ε̄
Blanchard and Diamond (1989) OLS, AR1 residual 1968-1981 0.54
Bleakley and Fuhrer (1997) OLS with breakpoints 1979-1993 0.31-0.35
Shimer (2005) OLS, AR1 residual 1951-2003 0.28
Hall (2005) OLS 2000-2002 0.77
Rogerson and Shimer (2011) OLS, multiplicative noise 2001-2009 0.42
Michaillat and Saez (2021) OLS with breakpoints 1951-2019 0.51-0.61

Cobb-Douglas with endogeneity correction ε̄
Borowczyk-Martins et al. (2013) GMM IV 2000-2012 0.70
Şahin et al. (2014) OLS, GMM IV, varied data 2001-2012 0.24-0.66
Barnichon and Figura (2015) GMM IV 1968-2007 0.34
Sedláček (2016) OLS with non-unemployed 2000-2013 0.24
Hall and Schulhofer-Wohl (2018) OLS with aggregation 2001-2013 0.35

CES ε̄ σ
Blanchard and Diamond (1989) NLS, AR1 residual 1968-1981 0.54 0.74
Shimer (2005) NLS, AR1 residual 1951-2003 0.28 1.06
Şahin et al. (2014) GMM IV, varied data 2001-2012 0.24-0.66 0.9-1.2

Non-parametric
Lange and Papageorgiou (2020) Non-parametric 2001-2017 εt ∈ (0.15, 0.3) Procyclical

Table 1: Empirical estimates of the matching function. ε̄ is a fixed matching elasticity, σ is the elasticity
of substitution, and εt is a time-varying matching elasticity. Cobb-Douglas lists papers that impose the
Cobb-Douglas functional form. Cobb-Douglas with endogeneity correction lists papers that account for
endogeneity and impose the Cobb-Douglas functional form at the aggregate or job status level. CES lists
papers that use the CES functional form. Non-parametric lists papers that do not impose a functional form.

Empirical Evidence Table 1 summarizes the empirical literature that estimates either a fixed or
time-varying matching elasticity. For brevity and to permit a cleaner comparison of the estimates,
we focus on studies that use U.S. data and impose constant returns to scale in the matching function.

Early work used aggregate data on hires, vacancies, and unemployment to directly estimate
a log-linear matching function with OLS. Following the logic of Proposition 1, this approach
implicitly assumed a Cobb-Douglas matching function and estimated the fixed matching elasticity.
Due to differences in data sources and samples, the estimates ranged from around 0.3 in Bleakley
and Fuhrer (1997) and Shimer (2005) up to 0.77 in Hall (2005). Furthermore, estimates based on
data from the more recent JOLTS survey (Hall, 2005; Rogerson and Shimer, 2011) are higher than
past estimates based on CPS flows data (Bleakley and Fuhrer, 1997) or the Shimer (2005) method.
More recently, Michaillat and Saez (2021) develop a different approach in which they first estimate
the elasticity of vacancies with respect to unemployment using OLS with breakpoints and then use
a search and matching model to solve for the matching elasticity, which ranges from 0.51 to 0.61.

More recent work developed methods to deal with potential endogeneity due to unobserved
variation in matching efficiency (the φ term in the Cobb-Douglas specification above), either by
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using instruments (Borowczyk-Martins et al., 2013) or by exploiting heterogeneity in job seekers
(Hall and Schulhofer-Wohl, 2018). In addition, Sedláček (2016) proposed a latent-variable strategy
to deal with unobserved job search by non-unemployed workers. These papers maintained the
Cobb-Douglas assumption at either the aggregate or job status level and generated estimates in the
same range as the estimates that did not correct for endogeneity. The broad range of estimates is
again at least partially due to different data choices, with higher estimates generated by JOLTS
data (Borowczyk-Martins et al., 2013; Şahin et al., 2014) and a lower estimates generated by CPS
flows data (Barnichon and Figura, 2015) or industry-level hires from CPS data (Şahin et al., 2014).

A few papers relax the Cobb-Douglas assumption. Imposing the CES functional form, Blan-
chard and Diamond (1989) estimated an elasticity of substitution of 0.74. More recently, Shimer
(2005) and Şahin et al. (2014) obtained estimates closer to 1 but with larger standard errors, in-
dicating weak identification. Given Corollary 1, this suggests that the cyclicality of the matching
elasticity is highly uncertain. Finally, Lange and Papageorgiou (2020) propose a non-parametric
identification strategy that deals with potential endogeneity. They estimate a procyclical elasticity
that fluctuates between 0.15 and 0.3, which is consistent with a CES matching function with σ > 1.

Outlook There is considerable uncertainty surrounding the matching elasticity, even when it is as-
sumed to be fixed. Among papers relaxing that assumption, there is additional uncertainty about the
elasticity of substitution between vacancies and job seekers and the cyclicality of the matching elas-
ticity. The most recent and most general econometric specification finds that the matching elasticity
is procyclical, in contrast with the Cobb-Douglas matching function. The lack of consensus and im-
plausibility of a fixed matching elasticity shows why it is important to investigate the implications
of a time-varying matching elasticity. As we will show, even modest variation has significant impli-
cations, which motivates empirical work that can provide greater clarity on the matching function.

3 ENVIRONMENT

To cleanly demonstrate our results, we use a textbook search and matching model. The one excep-
tion is that we use a general constant returns to scale matching function, rather than assuming a par-
ticular functional form. Each period denotes 1 month and the population (equal to the labor force)
is normalized to unity. Business cycles are driven by shocks to labor productivity, at, which follows

at+1 = ā+ ρa(at − ā) + σaεa,t+1, 0 ≤ ρa < 1, εa ∼ N(0, 1). (1)

Search and Matching Entering period t, there are nt−1 employed workers and ut−1 = 1 − nt−1

unemployed job seekers. In period t, firms post vt vacancies, so the number of matches is given by

mt = min{M(ut−1, vt), ut−1, vt}, (2)
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whereM is a constant returns to scale matching function that satisfies the assumptions in Section 2.
Given the number of matches, the job finding rate, job filling rate, and laws of motion satisfy

ft = mt/ut−1, (3)

qt = mt/vt, (4)

nt = (1− s̄)nt−1 + ftut−1, (5)

ut = ut−1 + s̄nt−1 − ftut−1, (6)

where ut = 1− nt, s̄ ∈ (0, 1) is the exogenous separation rate, and (2) ensures that ft, qt ∈ [0, 1].

Firms A representative firm chooses vacancies and employment {vt, nt} to solve

Vt = max
vt,nt

atnt − wtnt − κvt + Et[xt+1Vt+1]

subject to nt = (1 − s̄)nt−1 + qtvt and vt ≥ 0, where κ > 0 is the vacancy posting cost, wt is the
wage rate, and Et is an expectation operator conditional on time-t information. The representative
household’s pricing kernel is xt+1 = β(ct/ct+1)γ , where ct is consumption, β ∈ (0, 1) is the dis-
count factor, and γ ≥ 0 is the coefficient of relative risk aversion.4 The optimality conditions imply

κ−λv,t
qt

= at − wt + (1− s̄)Et
[
xt+1

κ−λv,t+1

qt+1

]
, (7)

λv,tvt = 0, λv,t ≥ 0, (8)

where λv,t is the multiplier on the non-negativity constraint vt ≥ 0. Condition (7) sets the marginal
cost of hiring, (κ − λv,t)/qt, equal to the marginal benefit of hiring, which consists of the flow
profits from the match, at −wt, plus the savings from not having to post the vacancy in the future.

Wages As is common in the search and matching literature, wages are determined through Nash
bargaining between employed workers and the firm. Following the steps in Appendix A, we obtain

wt = η(at + κEt[xt+1(vt+1/ut)]) + (1− η)b, (9)

where η ∈ (0, 1) is the worker’s bargaining power and b > 0 is the flow value of unemployment.

Equilibrium The aggregate resource constraint is given by

ct + κvt = atnt. (10)

An equilibrium is infinite sequences of quantities {ct, nt, ut, vt,mt, ft, qt}∞t=0, prices {wt, λv,t}∞t=0,
and productivity {at}∞t=1 that satisfy (1)-(10) given the initial state {n−1, a−1} and shocks {εa,t}∞t=0.

4When households are risk averse (γ > 0), we follow the business cycle literature and assume there is perfect
consumption insurance for employed and unemployed workers (Andolfatto, 1996; Den Haan et al., 2000; Merz, 1995).
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4 ANALYTICAL RESULTS

This section analytically characterizes how the matching function affects the nonlinear dynamics of
the job finding and unemployment rates. Convexity or concavity of the job finding rate implies that
the productivity shock transmission is asymmetric. If the finding rate is convex (f ′′(at) > 0), then a
positive productivity shock at at will have a larger impact on the finding rate than a negative shock,
creating positive skewness. Conversely, if the finding rate is concave (f ′′(at) < 0), then a negative
shock will have a larger impact than a positive shock, creating negative skewness. The skewness
in the job finding rate transmits to skewness in the unemployment rate through its law of motion.

Our results show that convexity or concavity depends on σt, which controls the cyclicality of εt
according to Proposition 2. In particular, the job finding rate is convex if the matching elasticity is
sufficiently procyclical. Intuitively, a procyclical matching elasticity increases the transmission of
vacancies to matches when productivity increases, which amplifies the finding rate response and
generates convexity. Likewise, the finding rate is concave when the matching elasticity is suffi-
ciently countercyclical, as positive shock responses are dampened by a falling matching elasticity.

4.1 MODEL SOLUTION To solve the model analytically, we make two simplifying restrictions.

Assumption 1. γ = η = 0.

These conditions imply that workers are risk neutral and have zero bargaining weight, so wages
are sticky withwt = b (Hall, 2005).5 We relax these restrictions in Section 5 for our quantitative ex-
ercises. Given these conditions, we obtain an analytical expression for the marginal cost of hiring.

Proposition 3. Under Assumption 1, the marginal cost of hiring follows the stochastic process

(κ− λv,t)/qt = δ0 + δ1(at − ā), (11)

where

δ0 =
ā− b

1− β(1− s̄)
> 0, δ1 =

1

1− β(1− s̄)ρa
> 0,

and λv,t > 0 implies qt = 1.

In (11), δ0 is the steady-state marginal cost of hiring, while δ1 is the response of marginal cost to
changes in productivity. Intuitively, δ1 is increasing in the persistence of the productivity shock ρa.6

In the data, job finding and job filling rates are always strictly positive and strictly less than
unity. In the model, the restriction ft, qt ∈ (0, 1) implies vt > 0 and hence λv,t = 0. Assum-
ing shocks {at} are such that this restriction holds, we can invert (11) to obtain the equilibrium

5An alternative assumption about wages would be to follow Jung and Kuester (2011) and Freund and Rendahl
(2020) and use the ad-hoc linear wage rule wt = ηat + (1− η)b. Our qualitative results are unaffected by this choice.

6Den Haan et al. (2021) independently developed a similar solution to shed light on the effects of volatility shocks.
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stochastic process for the job filling rate,

q(at) = κ/(δ0 + δ1(at − ā)), (12)

which is decreasing and convex in productivity. Remarkably, this result does not depend on the
matching function, and instead follows directly from firms’ optimal vacancy creation and the defi-
nition of marginal cost. Intuitively, higher productivity increases vacancy creation, which reduces
the probability of filling any given vacancy. Convexity in the job filling rate arises because as
productivity increases, the probability declines at a slower rate since it is bounded below by zero.

In equilibrium, the job filling rate is determined by labor market tightness. To derive tightness
as a function of productivity, it is convenient to define the auxiliary function µq(θ) = M(1, θ)/θ,
which is strictly decreasing in θ and therefore invertible. Recalling that qt =M(1, θt)/θt, we can
implicitly define the equilibrium tightness function as µq(θ(at)) = q(at). Differentiation implies

θ′(at) = q′(at)/µ
′
q(θ(at)) > 0. (13)

Since q′(at), µ′q(θ(at)) < 0, (13) confirms that labor market tightness is increasing in productivity.
Given the equilibrium tightness function, we can use the definitions from Section 2 to define

εt =
Mv(1, θ(at))θ(at)

M(1, θ(at))
, σt =

d ln θ(at)

d ln(Mu(1, θ(at))/Mv(1, θ(at)))
,

where εt is the matching elasticity and σt is the elasticity of substitution between job seekers and
vacancies. These definitions help us uncover the nonlinearity in equilibrium tightness from θ′′(at).

Proposition 4. Labor market tightness, θ(at), is convex at at when σt > 1/2, linear at at when

σt = 1/2, and concave at at when σt < 1/2.

To interpret these conditions, it is useful to write the slope of the tightness function as

θ′(at) =
δ1

κ

M(1, θ(at))

1− εt
,

which shows that productivity affects θ′(at) through two channels. First, higher productivity gen-
erates more matches, which raisesM(1, θ(at)) and θ′(at). Second, higher productivity affects the
matching elasticity. Given Proposition 2, an increase in productivity lowers the matching elasticity
and θ′(at) when σt < 1. If σt < 1/2, this effect dominates the first channel, so tightness is concave
in productivity. When σt = 1/2, the two channels exactly offset, so tightness is linear in produc-
tivity. Finally, when σt > 1/2, the first channel dominates, so tightness is convex in productivity.

Given the equilibrium dynamics of tightness, we can use the matching function to derive the dy-
namics of the job finding rate. Formally, f(at) =M(1, θ(at)), so it is immediate that the job find-
ing rate is increasing in productivity. As with tightness, we analyze its nonlinearity through f ′′(at).
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Proposition 5. The job finding rate, ft = f(at), is convex at at when σt > 1/(2εt), linear at at
when σt = 1/(2εt), and concave at at when σt < 1/(2εt).

To interpret these conditions, it is useful to write the slope of the job finding rate function as

f ′(at) =Mv(1, θ(at))θ
′(at),

which shows that productivity also affects f ′(at) through two competing channels. First, higher
productivity raises labor market tightness, which lowers its marginal product,Mv(1, θ(at)), due to
diminishing returns to vacancy creation. This generates concavity in the job finding rate. Second,
higher productivity affects the responsiveness of tightness itself through θ′(at). As Proposition 4
shows, this effect is positive when σt > 1/2, generating convexity. If σt > 1/(2εt) > 1/2, it is
strong enough to dominate the first channel, making the job finding rate convex in productivity.
When σt = 1/(2εt), the two channels exactly offset, so the finding rate is linear in productivity. Fi-
nally, when σt < 1/(2εt), the first channel dominates, so the finding rate is concave in productivity.

4.2 EXAMPLES We can generate additional insights by considering specific matching functions.

CES Matching Function Recall the CES matching function,

M(ut−1, vt) =

φ
(
ϑu

(σ−1)/σ
t−1 + (1− ϑ)v

(σ−1)/σ
t

)σ/(σ−1)

σ 6= 1,

φuϑt−1v
1−ϑ
t σ = 1,

(14)

where φ > 0 is matching efficiency and ϑ ∈ (0, 1) governs the importance of unemployment. In
this case, the elasticity of substitution, σ, is fixed, while the matching elasticity takes the specific
form εt = (1− ϑ)(φ/q(at))

(σ−1)/σ. In line with Corollary 1, the matching elasticity is procyclical
when σ > 1, constant when σ = 1, and countercyclical when σ < 1. Using these properties, we
can derive sufficient conditions for global convexity or concavity of the job finding rate function.

Corollary 2. SupposeM(ut−1, vt) satisfies (14). Then σ > 1
2(1−ϑ)φ(σ−1)/σ ≥ 1 implies that f(at) is

globally convex, σ < 1
2(1−ϑ)φ(σ−1)/σ ≤ 1 implies that f(at) is globally concave, and σ = 1

2(1−ϑ)
= 1

implies that f(at) is globally linear.

DRW Matching Function A small but influential set of papers (e.g., Hagedorn and Manovskii,
2008; Petrosky-Nadeau et al., 2018) use the function introduced by Den Haan et al. (2000, DRW):

M(ut−1, vt) = ut−1vt/(u
ι
t−1 + vιt)

1/ι. (15)

In this case, ι > 0 and the elasticity of substitution is fixed at 1/(1+ι) < 1. The matching elasticity
satisfies εt = q(at)

ι and is always countercyclical according to Proposition 2. Thus, this specifi-
cation is inconsistent with the empirical estimates in Lange and Papageorgiou (2020). While it is
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often justified by appealing to the fact that it guarantees bounded job finding and filling rates with-
out the feasibility condition (2), it also has significant effects on nonlinear labor market dynamics.

Corollary 3. SupposeM(ut−1, vt) satisfies (15). Then ι > 1 implies f(at) is globally concave.

0.96 0.98 1 1.02 1.04
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.96 0.98 1 1.02 1.04
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 1: Nonlinearity of the job finding rate function.

4.3 ILLUSTRATION To see the nonlinearity embedded in the job finding rate function, Figure 1
plots f(at) using a CES matching function with σ ∈ {0.5, 1, 5} and ε̄ ∈ {0.3, 0.7}. Our choice of
σ = 0.5 corresponds to ι = 1 under a DRW matching function, which is comparable to values used
in the literature (e.g., Petrosky-Nadeau et al. (2018) set ι = 1.25, which would produce even more
concavity than ι = 1), while σ = 1 is the Cobb-Douglas case and σ = 5 generates a procyclical
matching elasticity in line with Lange and Papageorgiou (2020). Our choices for ε̄ captures the
range of estimates in the empirical literature. All other parameters are set using the strategy in
Section 5, which ensures the mean unemployment rate is fixed across the different specifications.

Following Proposition 5, the nonlinearity around steady state depends on whether σ ≶ 1/(2ε̄).
When ε̄ = 0.3, the threshold for convexity is relatively high, so the job finding rate is concave
in the Cobb-Douglas case and features pronounced concavity when σ = 0.5. When ε̄ = 0.7, the
threshold is lower, which results in far weaker concavity when σ = 0.5 and mild convexity in the
Cobb-Douglas case. When σ = 5, there is pronounced convexity for both values of ε̄. These results
illustrate the importance of the matching function parameters for nonlinear labor market dynamics.

4.4 NONLINEAR UNEMPLOYMENT DYNAMICS Since the matching function affects job finding
rate dynamics, it also affects unemployment dynamics via its law of motion. Differentiating (6)

11
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yields ∂ut/∂at = −ut−1f
′(at), which shows that the size of the unemployment response to a

change in productivity is larger when unemployment is already elevated and when the job finding
rate function is steeper. Intuitively, unemployment responds more when a change in the finding
rate is applied to a larger pool of workers or when the finding rate itself changes by a larger amount.

To understand whether the matching function amplifies or dampens nonlinear unemployment
dynamics, first note that ut−1 and at are negatively correlated because higher unemployment is
driven by low productivity shocks. Therefore, ut−1 and f ′(at) are positively correlated when the
job finding rate function is concave. Hence, a concave job finding rate function amplifies nonlinear
unemployment dynamics since periods of high unemployment coincide with larger finding rate re-
sponses to productivity shocks. In contrast, a convex job finding function dampens the nonlinearity
of unemployment because high unemployment tends to occur with smaller finding rate responses.

5 QUANTITATIVE RESULTS

Our analysis highlights the importance of the matching elasticity and elasticity of substitution. To
transparently quantify the mechanism, we use a CES functional form and report results for the same
values of the elasticity of substitution, σ, and steady-state matching elasticity, ε̄, used in Section 4.3.

Each period in the model denotes 1 month, so the discount factor, β, is set to 0.9983, which cor-
responds to an average annual real interest rate of 2%. The coefficient of relative risk aversion, γ, is
set to 1, consistent with log utility. The remaining parameters are based on U.S. data from 1955 to
2019. The steady-state job separation rate, s̄, is set to its sample mean 0.0326, which we compute
following Shimer (2012). The persistence (ρa = 0.8826) and standard deviation (σa = 0.0062) of
productivity are set to match the autocorrelation and standard deviation of detrended productivity.

To isolate the impact of the matching function on higher-order labor market dynamics, we hold
the mean and standard deviation of the unemployment rate fixed across (σ, ε̄) pairs. In particular,
under each specification we estimate the vacancy posting cost, κ, and flow value of unemployment,
b, to target the mean unemployment rate and the standard deviation of the detrended unemployment
rate in our data sample. In addition, we estimate the bargaining power parameter, η, to target the
wage-productivity elasticity.7 Each specification is able to perfectly match these empirical targets.

We set the steady-state job filling rate to 0.3306, which corresponds to a quarterly filling rate of
0.7 (Den Haan et al., 2000). The steady-state job finding rate is endogenously pinned down by the
mean unemployment rate since f̄ = s̄(1− ū)/ū, and ū is determined by the vacancy posting cost,

7The empirical targets are based on quarterly data. Each period in the model denotes 1 month, so we aggregate the
simulated time series to a quarterly frequency to match the frequency of labor productivity in the data. To facilitate
comparison with the literature, we detrend actual data using a Hodrick and Prescott (1997) filter with a smoothing
parameter of 1,600. We detrend simulated data by computing percent deviations from the short-sample time averages.
The wage rate (wt) is defined as the product of the labor share and labor productivity (at) in the nonfarm business sector
(Hagedorn and Manovskii, 2008). The wage elasticity is the slope coefficient from regressingwt on an intercept and at.
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κ. Given q̄, f̄ , and a (σ, ε̄) pair, we pin down ϑ and φ using the following steady-state restrictions:

φ =


[
ε̄q̄(σ−1)/σ + (1− ε̄)f̄ (σ−1)/σ

]σ/(σ−1)
σ 6= 1,

q̄ε̄f̄ 1−ε̄ σ = 1,

ϑ = (1− ε̄)(f̄/φ)(σ−1)/σ.

This ensures each matching function has similar first-order properties, in line with Proposition 1.

Solution Method To quantify the nonlinearities, we solve the model globally using the policy
function iteration algorithm in Richter et al. (2014), which is based on the theoretical work in Cole-
man (1991). The algorithm minimizes the Euler equation errors on each node in the state space and
computes the maximum change in the policy functions. It then iterates until the maximum change
is below a specified tolerance criterion. Appendix B describes the solution method in more detail.

Estimates Table 2a reports the estimated parameters, (κ, b, η), and implied matching function
parameters, (φ, ϑ), given the steady-state matching elasticity, ε̄, and the elasticity of substitution,
σ.8 All of the parameter estimates are in line with values that are commonly used in the literature.

Higher-Order Moments Table 2b shows key untargeted moments across the (σ, ε̄) pairs. Con-
sider first the specifications where ε̄ = 0.3, which is close to recent estimates of the mean matching
elasticity reported in Table 1. When σ = 0.5 and the matching elasticity is countercyclical, pos-
itive productivity shocks are dampened relative to negative shocks. As a result, job finding rate
dynamics exhibit significant negative skewness (−1.4), which amplifies the positive skewness and
kurtosis of the unemployment rate (2.37 and 9.78). These outcomes are flipped when σ = 5 and the
matching elasticity is procyclical. The job finding rate becomes positively skewed (0.33), and the
positive skewness and kurtosis of the unemployment rate are considerably weaker (0.29 and 0.04).

Qualitatively similar patterns emerge when ε̄ = 0.7, though the differences across σ values
are much less pronounced. In line with the logic from Proposition 5, a higher mean matching
elasticity lowers the threshold that σ must exceed for the job finding rate function to be convex
in productivity. Therefore, there is much less negative skewness when σ = 0.5 (−0.29), which
results in less amplification of the positive skewness and kurtosis of the unemployment rate (0.95

and 1.55). When σ = 5, the job finding rate is even more positively skewed than when ε̄ = 0.3

(0.49), which results in almost no skewness or kurtosis in the unemployment rate (0.15 and−0.08).
Crucially, the large variation in higher-order labor market moments is driven by modest cyclical

movements in the matching elasticity. When σ 6= 1, the standard deviation of the matching elas-
ticity ranges from 0.03 to 0.07. This modest variation implies that the matching elasticity would

8Consistent with Hagedorn and Manovskii (2008), the baseline model requires a b that is close to the marginal
product of labor in order to generate realistic labor market volatility. Appendix C shows that if we introduce home pro-
duction, we can set b = 0.4 so it resembles an unemployment benefit while achieving the same labor market volatility.
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ε̄ 0.3 0.7

σ 0.5 1.0 5.0 0.5 1.0 5.0

Vacancy Posting Cost (κ) 0.0794 0.0610 0.0507 0.3848 0.3493 0.3367
Flow Value of Unemployment (b) 0.9716 0.9777 0.9815 0.9243 0.9302 0.9328
Worker Bargaining Power (η) 0.1276 0.1320 0.1327 0.0515 0.0534 0.0535

Matching Efficiency (φ) 0.4540 0.4645 0.4683 0.3733 0.3811 0.3879
Unemployment Weight (ϑ) 0.5880 0.7000 0.7729 0.2096 0.3000 0.3841

(a) Estimated and implied parameter values.

ε̄ 0.3 0.7

σ 0.5 1.0 5.0 0.5 1.0 5.0

Skew(f) −1.40 −0.58 0.33 −0.29 0.12 0.49
Skew(u) 2.37 1.35 0.29 0.95 0.49 0.15
Kurt(f) 3.35 0.75 0.15 0.08 −0.06 0.32
Kurt(u) 9.78 3.63 0.04 1.55 0.33 −0.08
SD(ε) 0.07 0.00 0.07 0.04 0.00 0.03
Corr(ε, u) 0.96 0.00 −0.98 0.97 0.00 −0.98

(b) Higher-order moments. All specifications generate the same E(u), SD(u), and Slope(w, a).

Table 2: Quantitative results.

rarely leave the range of estimates in Table 1, given a mean in that range. It also aligns with the
direct evidence of cyclical variation provided by Lange and Papageorgiou (2020). They find the
matching elasticity is procyclical, varying between 0.15 and 0.30 with a standard deviation of 0.04.
These estimates imply far less nonlinearity in labor market dynamics than the literature has recently
emphasized (e.g., Ferraro, 2018; Petrosky-Nadeau and Zhang, 2017; Petrosky-Nadeau et al., 2018).

The dependence of the higher-order moments on the elasticity of substitution suggests we could
identify σ by adding them as empirical targets. We explored this strategy but did not find it com-
pelling for two reasons. First, the estimate for σ was sensitive to the targeted higher-order moments
(e.g., Skew(u) or Skew(f)) and the steady-state matching elasticity ε̄. Second, identifying σ using
higher-order moments assumes that cyclical variation in the matching elasticity is the only driver
of nonlinear dynamics. This contradicts existing work such as Dupraz et al. (2019), who show how
downward wage rigidity can also create nonlinear labor market dynamics. Thus, the estimate of σ
would also be sensitive to the inclusion of model ingredients that affect higher-order moments. The
macro implications of the matching function, instead, motivate additional microeconometric work.

Impulse Responses A growing literature uses the search and matching model as a lens for un-
derstanding deep recessions and business cycle asymmetries (e.g., Dupraz et al., 2019; Petrosky-
Nadeau and Zhang, 2017; Petrosky-Nadeau et al., 2018). Our analysis shows the matching function
specification plays a crucial role in this setting. While the skewness and kurtosis moments capture
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Figure 2: Generalized impulse responses to a −2 SD shock initialized in a recession (u0 = 7.5%). The job
finding and unemployment rates are percentage point changes and the matching elasticity is a level change.

some of this effect, Figure 2 provides further context by plotting generalized impulse responses of
the unemployment and job finding rates to a 2 standard deviation negative productivity shock.9 We
allow for state-dependence by initializing the simulations in a recession (u0 = 7.5%). When we
alternatively initialize the simulations at steady state (u0 = 5.9%), the responses are similar across
matching function specifications. This intuitively follows from the fact that our parameter calibra-
tion strategy ensures that all matching function specifications generate similar first-order dynamics.

9Following Koop et al. (1996), the response of xt+h over horizon h is given by Gt(xt+h|εa,t+1 = −2, zt) =
Et[xt+h|εa,t+1 = −2, zt]−Et[xt+h|zt], where zt is a vector of initial states and −2 is the shock size in period t+ 1.
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Large differences in the impulse responses emerge when the shock hits in a recessionary state
and the mean matching elasticity is low (ε̄ = 0.3). When σ = 0.5 and the job finding rate is a
concave function of productivity, the matching function generates an unemployment rate response
that is more than double the response when σ = 5. The larger response is driven by a larger decline
in the job finding rate, which follows from the countercyclical increase in the matching elasticity.
If the mean matching elasticity is higher (ε̄ = 0.7), the differences in the responses across σ are
still apparent, but not as pronounced. This again shows that the average level and cyclicality of the
matching elasticity are important to account for when studying nonlinear business cycle dynamics.

6 NORMATIVE IMPLICATIONS

This section shows the cyclicality of the matching function has normative implications, which af-
fect the wedges that restore efficiency and the response of the efficient real interest rate to shocks.

6.1 EFFICIENT FISCAL POLICY The equilibrium of a search and matching model is generally
inefficient due to two externalities in the matching process (Hosios, 1990). First, when a firm posts
a new vacancy, it imposes a positive externality on unemployed workers who face a higher job
finding rate. Second, the same vacancy posting imposes a negative externality on other firms who
face lower job filling rates and a higher marginal cost of vacancy creation today and in the future.

To see how the matching function affects these externalities and the efficient policy responses,
we compare the equilibrium to the solution of a planning problem in which both externalities are in-
ternalized. The problem and solution are described in Appendix A. The key optimality condition is

κ− λv,t
Mv(ut−1, vt)

= at − b+ Et

[
xt+1

κ− λv,t+1

Mv(ut, vt+1)
(1− s̄−Mu(ut, vt+1))

]
, (16)

which determines the optimal level of vacancies by setting the social marginal cost (SMC) of a
vacancy to its social marginal benefit (SMB). The gaps between the SMC and SMB and the private
marginal cost (PMC) and private marginal benefit (PMB) reflect inefficiencies of the equilibrium.

To characterize these gaps, we follow the public finance literature and solve for the wedges—
state-dependent, linear taxes—that equate the two solutions. Let τv,t denote a tax on vacancy
creation, vt, and τn,t a tax on a firm’s payroll, nt−1, so that the firm’s flow profits are given by
(at−wt)nt−(1+τv,t)κvt−τn,tnt−1.10 Then the firm’s optimal vacancy creation choice is given by

κ− λv,t
qt

=
1− η

1 + τv,t
(at − b) + Et

[
x̃t+1

κ− λv,t+1

qt+1

(
1− s̄− 1

1 + τv,t+1

qt+1

κ− λv,t+1
(κηθt+1 + τn,t+1)

)]
,

where x̃t+1 ≡ xt+1(1 + τv,t+1)/(1 + τv,t). We can now solve for the wedges that restore efficiency.

10Placing a wedge on nt would be equivalent. We put the wedge on nt−1 since it is easier to compute and interpret.
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Proposition 6. The efficiency-restoring wedges are given by

τv(θt) = (1− η)/ε(θt)− 1,

τn(θt) = θt((κ− λv,t)τv(θt)− ηλv,t),

where each wedge is evaluated at the solution to the planning problem. Furthermore, τ ′v(θt) > 0

when σt < 1, and τ ′n(θt) > 0 when σt < 1−η
η

1−εt
εt

for all θt > 0.

The expression for τv,t shows how the vacancy tax balances the externalities. Note that 1− η is
the ratio of the period-t PMB, (1−η)(at− b), to the period-t SMB, at− b. The matching elasticity
εt = κ/qt

κ/Mv(ut−1,vt)
is the ratio of the PMC to the SMC. The sign of the wedge depends on which

ratio is larger. For example, τv,t > 0 when εt < 1 − η and the marginal cost gap is smaller than
the marginal benefit gap. In this case, there is inefficiently high private vacancy creation and the
negative externality on firms dominates the positive externality on workers. A positive vacancy
wedge dampens the incentive for private vacancy creation, restoring efficiency of the equilibrium.

Crucially, τv,t co-moves negatively with the matching elasticity, indicating its time-varying
strength. For example, if the matching function is CES, then the matching elasticity is countercycli-
cal and τv,t is procyclical when σ < 1 because the gap between private and efficient vacancy cre-
ation is larger in booms. In contrast, τv,t is countercyclical when σ > 1 because the gap is larger in
recessions. Finally, in the knife-edge case where σ = 1, the efficient vacancy tax is constant. Thus,
the matching function specification is crucial for implementing efficient taxes on vacancy creation.

The payroll tax (τn,t > 0) accounts for the gap between the period-t+ 1 SMB and PMB. Intu-
itively, private vacancy creation boosts employment today, which lowers ut and raises the marginal
cost of vacancy creation in the future. A payroll tax is necessary to limit private vacancy creation
in period t, undoing the negative externality. Restricting attention to θt > 0 so that λv,t = 0 and
τn,t = κθtτv,t, its time-variation is determined by two forces. The first is procyclical variation in
tightness. The second is variation in τv,t, which is decreasing in tightness when σt > 1. However,
as long as σt < 1−η

η
1−εt
εt

, this force is dominated by or amplifies the first channel so that τn,t is pro-
cyclical. Understanding the true matching function is again vital for implementing the efficient tax.

6.2 OPTIMAL MONETARY POLICY When the real allocation is efficient, the corresponding real
interest rate, r∗t , serves as the key target for monetary policy in the presence of nominal rigidities.11

To understand how the nonlinearities in the matching function impact the optimal monetary policy
response to productivity shocks, Figure 3 plots generalized impulse responses of r∗t to a 2 standard

11The optimality of targeting r∗t requires appropriate fiscal policies to correct for the matching externalities de-
scribed above and for the inefficient markups created by price-setting power. See Lepetit (2020) for an example of opti-
mal monetary policy without fiscal policies in a search and matching model with the Cobb-Douglas matching function.
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Figure 3: Percentage point responses to a −2 SD shock initialized in a recession (u0 = 7.5%).

deviation negative labor productivity shock when the economy begins in a recession (u0 = 7.5%).12

The responses of r∗t are driven by expected changes in consumption growth. Since the con-
sumption response largely follows the negative of the unemployment rate response in Figure 2, r∗t
inherits its nonlinear dynamics, which are affected by the matching function specification. Con-
sider the responses when ε̄ = 0.3. When σ = 0.5, the higher peak unemployment response leads
to a larger decline in consumption and a more volatile r∗t response than when σ = 5. The initial
decline in r∗t occurs because consumption growth first declines in response to the shock, before
increasing as the shock dissipates. This effect disappears when σ = 5 due to the weaker unem-
ployment response. Similar results emerge when ε̄ = 0.7, except the differences in the r∗ responses
are muted with less curvature in the matching function. Just like the optimal wedges, these results
show the importance of knowing the matching function for the conduct of optimal monetary policy.

7 CONCLUSION

The Cobb-Douglas matching function is ubiquitous in search and matching models, even though
it imposes a constant elasticity of matches with respect to vacancies that is unlikely to hold empir-
ically. To examine the implications of this discrepancy, we use a general constant-returns-to-scale
matching function to derive conditions that determine how the cyclicality of the matching elasticity
amplifies or dampens the nonlinear dynamics of the job finding and unemployment rates. We then
show these effects are quantitatively large and driven by modest variation in the matching elasticity.

While richer models could affect the strength of the nonlinearities, the Cobb-Douglas match-

12Following the approach in Section 5, we set the vacancy posting cost, κ, and flow value of unemployment, b, in
the efficient equilibrium so that the mean and standard deviation of the unemployment rate are fixed across (σ, ε̄) pairs.
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ing function is not without loss of generality. The cyclicality of the matching elasticity that ensues
when deviating from Cobb-Douglas would feed into to job finding and unemployment rate dynam-
ics in any search and matching model, so it is important for future research to show how alterna-
tive matching functions affect their results. Furthermore, we hope our analysis motivates empirical
work that provides additional clarity on the true nature of the matching frictions in the labor market.
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A DERIVATIONS AND PROOFS

A.1 WAGES To derive the wage rate under Nash bargaining, consider the household’s problem:

Jt = max
ct

c1−γ
t /(1− γ) + βEtJt+1

subject to

ct = wtnt + but − τt,

nt = (1− s̄)nt−1 + ftut−1,

ut = ut−1 + s̄nt−1 − ftut−1.

Using the envelope theorem, the marginal values of employment and unemployment are given by

JHn,t = wt + Et[xt+1((1− s̄)JHn,t+1 + s̄JHu,t+1)],

JHu,t = b+ Et[xt+1(ft+1J
H
n,t+1 + (1− ft+1)JHu,t+1)].

Similarly, use the firm’s problem to define the marginal value of employment to the firm,

JFn,t = at − wt + (1− s̄)Et[xt+1J
F
n,t+1] = κ−λv,t

qt
.

Define the total surplus of a new match as Λt = JFn,t + JHn,t− JHu,t. The equilibrium wage maxi-
mizes (JHn,t−JHu,t)η(JFn,t)1−η. Optimality implies JHn,t−JHu,t = ηΛt and JFn,t = (1−η)Λt. Combining
the optimality conditions with JHn,t, J

H
u,t, and JFn,t, and defining tightness as θt = vt/ut−1, we obtain

wt = η(at + κEt[xt+1θt+1]) + (1− η)b.

A.2 THE EFFICIENT ALLOCATION To solve for the efficient allocation, we imagine that the
frictional labor market is controlled by a central planner who posts vacancies on behalf of firms,
so it internalizes the two externalities associated with vacancy creation. The central planner solves

Wt = max
ct,nt,vt

c1−γ
t /(1− γ) + βEtWt+1

subject to

ct = atnt − κvt + b(1− nt)− τt,

nt = (1− s̄)nt−1 +M(1− nt−1, vt),

vt ≥ 0,
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which imposes ut = 1− nt. The efficient allocation is characterized by (1), (8), (10), and

κ−λv,t
Mv(1−nt−1,vt)

= at − b+ Et[xt+1
κ−λv,t+1

Mv(1−nt,vt+1)
(1− s̄−Mu(1− nt, vt+1))], (A.1)

nt = (1− s̄)nt−1 +M(1− nt−1, vt). (A.2)

A.3 PROOFS RecallM(ust , vt) is strictly increasing, strictly concave, and twice differentiable
in both arguments, and it exhibits constant returns to scale. We use the following standard results:

Lemma 1. Mvv(1, θt)θt = −Muv(1, θt).

Lemma 2. The elasticity of substitution has the equivalent representation

σ(θt) =
Mv(1, θt)Mu(1, θt)

Mvu(1, θt)M(1, θt)
.

Proposition 1 A constant returns to scale matching function,M(ust , vt), has linear approximation

M(ust , vt) ≈M(ūs, v̄) +Mu(ū
s, v̄)(ust − ūs) +Mv(ū

s, v̄)(vt − v̄),

where (ūs, v̄) is the point of approximation (e.g., a model’s deterministic steady state). By constant
returns to scale, Euler’s theorem implies m̄ ≡M(ūs, v̄) =Mu(ū

s, v̄)ūs +Mv(ū
s, v̄)v̄. Combin-

ing these results and converting the steady-state partial derivatives into matching elasticities yields

M(ust , vt) ≈ (1− ε̄) m̄
ūs
ust + ε̄ m̄

v̄
vt, (A.3)

where ε̄ is the matching elasticity evaluated at the approximation point. However, (A.3) is also
the first-order approximation of a Cobb-Douglas matching functionM(ust , vt) = φ(ust)

αv1−α
t with

α = 1−ε̄. Thus, using the Cobb-Douglas specification is without loss of generality up to first order.

Proposition 2 Differentiating the matching elasticity function ε(θt) = Mv(1,θt)θt
M(1,θt)

yields

ε′(θt) =

(
Mvv(1, θt)θt
Mv(1, θt)

+ 1− ε(θt)
)
Mv(1, θt)

M(1, θt)
.

Use Lemma 1 and Lemma 2 to obtain

ε′(θt) =

(
− 1

σ(θt)

Mu(1, θt)

M(1, θt)
+ 1− ε(θt)

)
Mv(1, θt)

M(1, θt)
.

Replace Mu(1,θt)
M(1,θt)

= 1− ε(θt) and rearrange to obtain

ε′(θt) =
σ(θt)− 1

σ(θt)
(1− ε(θt))

Mv(1, θt)

M(1, θt)
. (A.4)

Hence the sign of ε′(θt) has the same sign as σ(θt)− 1.
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Corollary 1 Combine Proposition 2 with the fact that σ(θt) = σ for all θt > 0.

Proposition 3 After imposing Assumption 1, (7) simplifies to

κ− λv,t
qt

= at − b+ β(1− s̄)Et
[
κ− λv,t+1

qt+1

]
.

We can guess and verify a unique solution of the form κ−λv,t
qt

= δ0 + δ1(at − ā), where

δ0 =
ā− b

1− β(1− s̄)
, δ1 =

1

1− β(1− s̄)ρa
.

If λv,t > 0 then vt = 0. Since mt = vt and qt = 1 for vt arbitrarily close to 0, we have qt = 1

when λv,t > 0 by continuity. Therefore, if productivity is such that κ/(δ0 + δ1(at − ā)) ∈ [0, 1),
then q(at) = κ/(δ0 + δ1(at − ā)) and λv,t = 0. Otherwise, qt = 1 and λv,t = κ− δ0 − δ1(at − ā).

Proposition 4 Differentiate µq(θ) =M(1, θ)/θ to obtain µ′q(θ) = −1−ε(θ)
θ

M(1,θ)
θ

. Hence

θ′(at) = − q
′(at)

1− εt
θ(at)

2

M(1, θ(at))
.

Use q′(at) = −q(at)2δ1/κ and q(at)θ(at) =M(1, θ(at)), to obtain

θ′(at) =
δ1

κ

M(1, θ(at))

1− εt
> 0.

Differentiate and use (A.4) to obtain

θ′′(at) =
δ1

κ

2σt − 1

σt

Mv(1, θ(at))θ
′(at)

1− εt
. (A.5)

Hence the sign of θ′′(at) has the same sign as σt − 1/2.

Proposition 5 Differentiate f ′(at) =Mv(1, θ(at))θ
′(at) to obtain

f ′′(at) =Mvv(1, θ(at))θ
′(at)

2 +Mv(1, θ(at))θ
′′(at).

Use Lemma 1 and Lemma 2 to obtain

f ′′(at) =

(
θ′′(at)−

1

σ(θ)

Mu(1, θ)

M(1, θ)

θ′(at)
2

θ(at)

)
Mv(1, θ(at)).

Replace Mu(1,θt)
M(1,θt)

= 1− ε(θt) and use (A.5) to obtain

f ′′(at) =

(
δ1

κ

2σt − 1

σt

Mv(1, θ(at))

1− εt
− 1− εt

σt

θ′(at)

θ(at)

)
θ′(at)Mv(1, θ(at)).
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Use θ′(at) = δ1
κ
M(1,θ(at))

1−εt and εt = Mv(1,θt)θt
M(1,θt)

, to obtain

f ′′(at) =
2σtεt − 1

σt

Mv(1, θ(at))(θ
′(at))

2

θ(at)
.

Hence the sign of f ′′(at) is the same as the sign of σtεt − 1/2.

Corollary 2 Recall that q(at) ∈ (0, 1). When the matching function is CES, we have σt = σ and
εt = (1− ϑ)(φ/q(at))

(σ−1)/σ. By Proposition 5, the sign of f ′′(at) depends on whether

Ft ≡ 2σ(1− ϑ)(φ/q(at))
(σ−1)/σ Q 1.

Case 1 (σ > 1): (φ/q(at))
(σ−1)/σ ∈

(
φ(σ−1)/σ,∞

)
, so Ft > 2σ(1 − ϑ)φ(σ−1)/σ for all feasible

q(at). Thus, σ > 1
2(1−ϑ)φ(σ−1)/σ ≥ 1 implies f ′′(at) > 0 for all at such that q(at) ∈ (0, 1).

Case 2 (σ < 1): (φ/q(at))
(σ−1)/σ ∈

(
0, φ(σ−1)/σ

)
, so Ft < 2σ(1 − ϑ)φ(σ−1)/σ for all feasible

q(at). Thus, σ < 1
2(1−ϑ)φ(σ−1)/σ ≤ 1 implies f ′′(at) < 0 for all at such that q(at) ∈ (0, 1).

Case 3 (σ = 1): σ = 2(1− ϑ) = 1 implies f ′′(at) = 0 for all at such that q(at) ∈ (0, 1).

Corollary 3 Given the Den Haan et al. (2000) matching function, we have σt = 1/(1 + ι) and
εt = q(at)

ι. By Proposition 5, the sign of f ′′(at) depends on whether

Ft = 2q(at)
ι/(1 + ι) Q 1.

Since ι > 0, we have 2q(at)
ι/(1 + ι) < 2/(1 + ι) for all feasible q(at). Therefore ι > 1 implies

that f ′′(at) < 0 for all at such that q(at) ∈ (0, 1).

Proposition 6 Given wedges {τv,t, τn,t}, the firm’s optimal vacancy creation condition becomes

κ− λv,t
qt

=
1− η

1 + τv,t
(at − b) + Et

[
x̃t+1

κ− λv,t+1

qt+1

(
1− s̄− 1

1 + τv,t+1

qt+1

κ− λv,t+1
(κηθt+1 + τn,t+1)

)]
,

where x̃t+1 ≡ xt+1(1 + τv,t+1)/(1 + τv,t). Setting

τv(θt) = (1− η)/ε(θt)− 1,

τn(θt) = θt((κ− λv,t)τv(θt)− ηλv,t),

aligns the private optimality condition with the efficient condition (A.1). Differentiating yields

τ ′v(θt) = −(1− η)ε′(θt)/ε(θt)
2,

τ ′n(θt) = κ(θtτ
′
v(θt) + τv(θt)) = κ

[
1− η
ε(θt)

− 1− 1− η
ε(θt)2

θtε
′(θt)

]
.
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Since (A.4) implies ε′(θt)θt/ε(θt) = (σt − 1)(1− ε(θt))/σt, we obtain

τ ′v(θt) = −
(

1− η
θt

)(
σt − 1

σt

)(
1− ε(θt)
ε(θt)

)
,

τ ′n(θt) = κ

[
1− η
ε(θt)

− 1− (1− η)

(
σt − 1

σt

)(
1− ε(θt)
ε(θt)

)]
.

Hence, τ ′v(θt) > 0 when σt < 1 and τ ′n(θt) > 0 when σt < 1−η
η

1−εt
εt

for all θt > 0.

B SOLUTION METHOD

The equilibrium system of the model is summarized byE[g(xt+1,xt, εt+1)|zt,P ] = 0, where g is a
vector-valued function, xt is a vector of variables, ε is a vector of productivity shocks, zt is a vector
of states, and P is a vector of parameters. There are many ways to discretize the productivity pro-
cess. We use the Markov chain in Rouwenhorst (1995), which Kopecky and Suen (2010) show out-
performs other methods for approximating autoregressive processes. The bounds on the state vari-
able nt−1 are set to [0.85, 0.98], which contains over 99% of the ergodic distribution. We discretize
at and nt−1 into 7 and 21 evenly-spaced points, respectively. The product of the points in each
dimension, D, is the total nodes in the state space (D = 147). The realization of zt on node d is de-
noted zt(d). The Rouwenhorst method provides integration weights, φ(m), for m ∈ {1, . . . ,M}.

Since vacancies vt ≥ 0, we introduce an auxiliary variable, µt, such that vt = max{0, µt}2 and
λ0,t = max{0,−µt}2, where λv,t is the Lagrange multiplier on the non-negativity constraint. If
µt ≥ 0, then vt = µ2

t and λv,t = 0. When µt < 0, the constraint is binding, vt = 0, and λv,t = µ2
t .

Therefore, the constraint on vt is transformed into a pair of equalities (Garcia and Zangwill, 1981).
The following steps outline our nonlinear policy function iteration algorithm:

1. Use Sims’s (2002) gensys algorithm to solve the linearized model. Then map the solution
for the policy functions to the discretized state space. This provides an initial conjecture.

2. On iteration j ∈ {1, 2, . . .} and each node d ∈ {1, . . . , D}, use Chris Sims’s csolve to find
µt(d) to satisfy E[g(·)|zt(d),P ] ≈ 0. Guess µt(d) = µj−1(d). Then apply the following:

(a) Solve for all variables dated at time t, given µt(d) and zt(d).

(b) Linearly interpolate the policy function, µj−1, at the updated state variables, zt+1(m),
to obtain µt+1(m) on every integration node, m ∈ {1, . . . ,M}.

(c) Given {µt+1(m)}Mm=1, solve for the other elements of xt+1(m) and compute

E[g(xt+1,xt(d), εt+1)|zt(d),P ] ≈
∑M

m=1 φ(m)g(xt+1(m),xt(d), εt+1(m)).

Set µj(d) = µt(d) when csolve converges.
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3. Repeat step 2 until maxdistj < 10−7, where maxdistj ≡ max{|µj − µj−1|}. When that
criterion is satisfied, the algorithm has converged to an approximate nonlinear solution.

The algorithm is programmed in Fortran with Open MPI and run on the BigTex supercomputer.

C HOME PRODUCTION

In the baseline model, we set b to target the standard deviation of unemployment in our sample.
This section shows we can equivalently set b externally as an unemployment benefit, and instead
use home production to target unemployment volatility by following Petrosky-Nadeau et al. (2018).

The household derives utility from the consumption of the final market good cm,t and home
production ch,t. It has log utility over composite consumption ct = (ωcem,t + (1−ω)ceh,t)

1/e, where
ω ∈ (0, 1) is the preference weight on the final market good and e ≤ 1 governs the elasticity of sub-
stitution 1/(1− e). The home production technology is ch,t = ahut, where ah > 0 is productivity.

Household optimization yields the pricing kernel xt+1 = β(cm,t/cm,t+1)1−e(ct/ct+1)e. The flow
value of unemployment becomes zt = ah((1−ω)/ω)(cm,t/ch,t)

1−e + b, so the Nash wage satisfies

wt = η((1− α)yt/nt + κ(1− χs̄)Et[xt+1θt+1]) + (1− η)zt.

The other equilibrium conditions are unchanged from the baseline model described in Section 3.
We set b = 0.4 to reflect the value of unemployment benefits (Shimer, 2005), and set ah = 1

to steady-state labor productivity in final good production. We then set e = 1, in line with existing
calibrations and estimates (Benhabib et al., 1991; Petrosky-Nadeau et al., 2018). In this case, zt =

(1−ω)/ω+ b, so ω determines the level of z, and hence the volatility of unemployment following
the fundamental surplus arguments in Ljungqvist and Sargent (2017). Thus, we can set ω in each
model to generate the same unemployment volatility and quantitative results as the baseline model.
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