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ABSTRACT
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ing models. We develop a novel identification scheme based on the matching elasticity that

allows these models to perfectly match a range of labor market moments. Our estimated linear

model also matches several non-targeted moments including the Beveridge curve and the de-

composition of inflows and outflows of unemployment. A structural decomposition reveals job

separation rate shocks explain 40% of unemployment volatility. The nonlinear version of our

model generates state-dependent dynamics that produce empirically consistent fluctuations in

output growth uncertainty, 37% of which stem from separation rate shocks.
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1 INTRODUCTION

Short-run fluctuations in unemployment are a key component of modern business cycles. Devel-
oping quantitative frameworks that can account for these fluctuations remains an active area of
research. Even in a model without investment or risk aversion, Shimer (2005) shows labor market
volatility is low under common parameterizations. In response to this puzzle, recent work has used
simple frameworks to shed light on mechanisms that generate empirically consistent labor market
fluctuations (Hagedorn and Manovskii, 2008; Hall and Milgrom, 2008; Ljungqvist and Sargent,
2017; Pissarides, 2009). Using these observations as a point of departure, we provide new qualita-
tive and quantitative insights into the business cycle mechanics of search and matching models.

We conduct our analysis using a real business cycle model with unemployment à la Diamond-
Mortensen-Pissarides. The model is driven by estimated stochastic processes for labor productivity
and the job separation rate. The paper makes three contributions to the literature. First, we develop
an identification scheme that allows the model to exactly match a range of labor market moments,
including the volatilities of unemployment and vacancies. Our identification scheme shows how
model parameters are connected to the data in ways calibration exercises may obscure. For exam-
ple, we show how the elasticity of matches with respect to unemployment determines the volatility
of vacancies relative to the volatility of unemployment. Intuitively, when the matching elasticity
is higher, a given increase in matches requires a smaller increase in unemployment. Therefore, as
matches fluctuate over the business cycle, unemployment fluctuates less relative to vacancies.

To generate realistic volatilities of both unemployment and vacancies, we combine the match-
ing elasticity with the “fundamental surplus,” defined as the marginal product of labor minus any
resources that are not allocated to vacancy creation (Ljungqvist and Sargent, 2017). The fundamen-
tal surplus sets the level of labor market volatility, while the matching elasticity determines how
the volatility is split between vacancies and unemployment. To demonstrate the advantage of our
approach, we contrast our results with a model in which the matching elasticity is implied by target-
ing average labor market tightness (e.g., Hagedorn and Manovskii, 2008). In this case, the model
produces substantial labor market volatility, but the split between unemployment and vacancies is
far from the data. The implied matching elasticity is also outside of the plausible range (Mortensen
and Nagypal, 2007; Petrongolo and Pissarides, 2001), in sharp contrast with our estimated model.

The model simultaneously matches the volatilities of aggregate consumption, investment, un-
employment, and vacancies. In addition to matching these targeted moments, our estimated model
closely matches a range of non-targeted moments, validating the model’s propagation mechanisms.
Importantly, the correlation of unemployment with vacancies (i.e., the Beveridge curve) is consis-
tent with the data. The model also produces realistic volatilities of the job finding rate and the net
exit rate, which measures the net flow into unemployment within a period. In addition, the model
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generates endogenous persistence beyond the exogenous driving processes, which is crucial for the
model to match the persistences of unemployment, vacancies, the job finding rate, and net exit rate.

Our second contribution uses our model to revisit the transmission of shocks to the job separa-
tion rate. We begin by offering a structural interpretation of an open empirical question: how much
unemployment volatility is explained by variation in the job separation rate? Shimer (2012) finds
job separation rate shocks account for at most 25% of the variation in unemployment in the data.
However, as Barnichon (2012) points out, this result is based on the assumption that the job finding
and job separation rates are independent. After relaxing this assumption, the empirical contribu-
tion of job separation rate shocks rises to 40%. We implement two decompositions and show that
our model is consistent with both of these findings. First, we estimate the reduced-form regression
of Shimer (2012), and find that separation rate shocks account for 25%-30% of unemployment
variation. Second, we use our model to construct a fully structural decomposition that controls for
the dependence of the job finding rate on job separation rate shocks. We find job separation rate
shocks account for 30% of variation in the job finding rate. Once we account for this, the contribu-
tion of job separation rate shocks to unemployment volatility naturally increases. In the baseline
log-linear version of our model, variation in the job separation rate on average accounts for 50%

of unemployment volatility. The contribution falls to 40% when we solve the model nonlinearly to
account for state-dependence in the underlying shocks, which is in line with Barnichon (2012).

We then turn to the transmission of job separation rate shocks, distinguishing between shocks
that affect only the job separation rate and shocks that also affect labor productivity according to
the strength of their empirical correlation. Accounting for this correlation is crucial. In the absence
of an associated decline in labor productivity, an increase in job separations causes unemployment
and vacancies to increase, which contrasts with the negatively sloped Beveridge curve observed in
the data. Allowing for a correlated decline in labor productivity in our model prevents this coun-
terfactual outcome and strengthens the macroeconomic responses to a job separation rate shock.

We also find meaningful state-dependence in the impulse responses when we solve our model
nonlinearly. For example, unemployment rises about 50% more in response to a job separation
rate shock when the economy is already in a recession where the unemployment rate is 10%.
This endogenous amplification complements the results for labor productivity shocks analyzed by
Petrosky-Nadeau et al. (2018) and provides an additional source of endogenous disaster dynamics.

Finally, we show the nonlinearities in our model generate endogenous uncertainty—the ex-
pected volatility of the one-month ahead forecast error of output growth. Although we do not
target uncertainty moments, the volatility of uncertainty in our model is close to reduced-form
empirical measures (Jurado et al., 2015) and consistent with the empirical finding that uncertainty
about real activity is typically an endogenous response to business cycles rather than an exoge-
nous propagation (Ludvigson et al., 2020). When we decompose uncertainty into its structural
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components, job separation rate shocks explain 37% of its variation. These results show that job
separation rate shocks also have an important role in explaining variation in higher-order moments.

Related Literature The literature on search and matching in a business cycle setting is exten-
sive. Our analysis stays close to the quantitative tradition of the early literature (Andolfatto, 1996;
Den Haan et al., 2000; Merz, 1995), while building on the insights of the recent literature that
abstracts from capital and curvature in utility (Hagedorn and Manovskii, 2008; Ljungqvist and
Sargent, 2017; Mortensen and Nagypal, 2007; Shimer, 2005). Relative to these influential papers,
we develop a complete and portable parameter identification scheme that improves on the stan-
dard calibration approach. We emphasize how the matching elasticity drives relative labor market
volatility and validate our estimation strategy using a range of goods and labor market moments.

We highlight the importance of exogenous variation in the job separation rate in explaining
business cycle fluctuations. This emphasis contrasts with much of the literature that either abstracts
from variation in the job separation rate altogether or treats it as purely endogenous (Den Haan
et al., 2000; Fujita and Ramey, 2012). The tight link between job separations and productivity
in these papers results in a much stronger negative correlation than what we measure in the data.
To attain a realistic correlation, we assume variation in the job separation rate is exogenous and
estimate its correlation with labor productivity by targeting this moment in the data. Our approach
is similar to Coles and Kelishomi (2018), who study how separation rate shocks and vacancy
adjustment frictions interact in a search and matching model. The estimated model matches job
separation rate moments in the data, including their reduced-form contribution to unemployment
volatility (Barnichon, 2012; Elsby et al., 2009; Shimer, 2012). This framework also allows us to
study the transmission of separation rate shocks, which is impossible in a purely endogenous setup.

Our estimation-based approach is related to recent work by Christiano et al. (2016), who esti-
mate a New Keynesian model with labor market frictions to match identified impulse responses of
macroeconomic variables to monetary and technology shocks. Relative to their analysis, we offer
a complementary approach to the identification of key model parameters. Furthermore, we pay
special attention to the role of job separation rate shocks, including their state-dependent effects.

To our knowledge, we are the first to analyze endogenous uncertainty in a search and matching
model. Our results are consistent with the growing empirical literature that measures macro uncer-
tainty and its effects in the data (Jurado et al., 2015; Ludvigson et al., 2020). From a theoretical
perspective, our analysis offers a new mechanism for generating time-varying endogenous uncer-
tainty that complements papers focused on financial (Brunnermeier and Sannikov, 2014; Mendoza,
2010; Plante et al., 2018), firm default (Arellano et al., 2019), or incomplete information channels
(Fajgelbaum et al., 2017; Straub and Ulbricht, 2015; Van Nieuwerburgh and Veldkamp, 2006).

The paper proceeds as follows. Section 2 introduces our model, while Section 3 details our
data and estimation strategy. Section 4 presents our quantitative results, and Section 5 concludes.
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2 MODEL

We situate our analysis in a real business cycle model, augmented to include a frictional labor
market similar to Merz (1995) and Andolfatto (1996). Relative to Shimer (2005), these frameworks
include capital and curvature in utility. Time is discrete and the population is normalized to unity.

Aggregate Shocks There are two sources of aggregate fluctuations: shocks to labor productivity
εa,t and the job separation rate εs,t. The shocks are independent standard normal random variables.

Search and Matching At the beginning of period t, the employment rate is nt−1. A fraction st of
employed workers are then separated from their jobs. The exogenous job separation rate follows

ln st+1 = (1− ρs) ln s̄+ ρs ln st + ρasσaεa,t+1 + σsεs,t+1, (1)

where ρas determines the cross-correlation between the job separation rate and labor productivity.
We assume newly separated workers are able to search for new jobs within the same period

as their job loss. However, it is natural that these workers will have less time to search for new
jobs than those who became unemployed in a previous period. Therefore, let χ ∈ [0, 1] denote
the fraction of a period that newly unemployed workers spend searching for work within the same
period as their job loss. Then the number of unemployed people searching for work is given by

ust = ut−1 + χstnt−1. (2)

Shimer (2005) makes this point when constructing a measure of the monthly job finding rate in the
data. To deal with this “time aggregation bias”, he sets χ = 0.5, while we estimate the value of χ.

Following Den Haan et al. (2000), if a firm posts vt vacancies the number of matches is given by

mt = ustvt/((u
s
t)
ι + (vt)

ι)1/ι, (3)

where ι > 0 controls the elasticity of matches with respect to unemployed searching. Define
θt ≡ vt/u

s
t as labor market tightness. Then the job finding rate ft and job filling rate qt are given by

ft = mt/u
s
t = 1/(1 + θ−ιt )1/ι, (4)

qt = mt/vt = 1/(1 + θιt)
1/ι. (5)

Following Blanchard and Galı́ (2010), we assume newly matched workers begin employment
in the same period they are matched with a firm, so aggregate employment evolves according to

nt = (1− st)nt−1 +mt. (6)
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The unemployment rate, ut, includes anyone who is not employed in period t, so it satisfies

ut ≡ ust −mt = 1− nt. (7)

Households Following Merz (1995) and Andolfatto (1996), employed and unemployed workers
pool their incomes in a representative family. A family head chooses optimal paths for consump-
tion and capital investment, taking the paths for aggregate employment and unemployment as
given. Investment is subject to capital adjustment costs, so the capital stock evolves according to

kt = (1− δ)kt−1 +

(
a1 +

a2

1− 1/ν

(
it
kt−1

)1−1/ν
)
kt−1, (8)

where 0 < δ < 1 is the capital depreciation rate, ν > 0 determines the size of the capital adjustment
cost, and a1 = δ/(1− ν) and a2 = δ1/ν are chosen so there are no adjustment costs in steady state.

The representative family solves

JHt = max
ct,it,kt

ln ct + βEt[J
H
t+1] (9)

subject to (8) and

ct + it = wtnt + rkt kt−1 + dt, (10)

nt+1 = (1− st+1(1− χft+1))nt + ft+1ut, (11)

ut+1 = st+1(1− χft+1)nt + (1− ft+1)ut, (12)

where wt is the wage, rkt is the rental return on capital, dt is firm dividends, and Et is the mathe-
matical expectation operator conditional on information at time t. The optimality conditions imply

1

a2

(
it
kt−1

)1/ν

= Et

[
xt+1

(
rkt+1 +

1

a2

(
it+1

kt

)1/ν

(1− δ + a1) +
1

ν − 1

it+1

kt

)]
, (13)

where xt = β(ct−1/ct) is the household’s stochastic discount factor. Condition (13) says the
marginal cost of investing in period t is equal to the marginal benefit in period t+1, which includes
the return on capital, the undepreciated capital stock, and the foregone capital adjustment cost.

Firms A representative firm produces output with a Cobb-Douglas production function given by

yt = kαt−1(atnt)
1−α, (14)

where 0 < α < 1 is the income share of capital, and labor productivity at evolves according to

ln at+1 = (1− ρa) ln ā+ ρa ln at + ρasσsεs,t+1 + σaεa,t+1. (15)
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To hire workers, the firm posts vacancies vt that are subject to a per unit cost κ. In addition, the
firm rents capital from the household at rental rate rkt and pays its workers a wage wt determined
by a Nash bargaining process described below. Therefore, the firm maximizes profits by solving

JFt = max
kt−1,nt,vt

yt − wtnt − rkt kt−1 − κvt + Et[xt+1J
F
t+1] (16)

subject to (14) and

nt = (1− st)nt−1 + qtvt, (17)

vt ≥ 0. (18)

Letting λn,t denote the Lagrange multiplier on (17), the optimality conditions are given by

rkt = αyt/kt−1, (19)

λn,t = (1− α)yt/nt − wt + Et[xt+1(1− st+1)λn,t+1], (20)

qtλn,t = κ− λ0,t. (21)

The first condition (19) sets the marginal product of capital equal to its rental rate, while (20)
recursively defines the marginal benefit of hiring an additional worker. Finally, (21) states that the
firm’s optimal vacancy creation choice sets the expected marginal benefit of a vacancy qtλn,t equal
to its marginal cost: the costs of creating the vacancy today minus the savings from relaxing the
non-negativity constraint. Also note that λn,t is the marginal surplus of a new match to the firm.

Wages As noted by Hall (2005), there are many ways to determine wages in search and matching
models. To facilitate comparison, we follow the bulk of the literature and assume wages are deter-
mined via Nash bargaining between an employed worker and the firm. To operationalize this wage
protocol, we define the total surplus of a match as Λt = λn,t +Wt − Ut, where Wt and Ut satisfy

Wt = wt + Et[xt+1((1− st+1(1− χft+1))Wt+1 + st+1(1− χft+1)Ut+1)]

Ut = b+ Et[xt+1(ft+1Wt+1 + (1− ft+1)Ut+1)].

Wt is the capitalized value of employment for the worker, whileUt and b define the worker’s highest
credible payoff from walking away from the wage negotiation (i.e., the worker’s outside option).

We are deliberately agnostic about the sources of the worker’s outside option b. In reality,
it could consist of many components from both the worker’s and firm’s microeconomic environ-
ments. For example, the worker may receive unemployment benefits or attain a utility payoff from
leisure time. Alternatively, if the firm faces fixed costs of hiring such as training costs or layoff
taxes (Petrosky-Nadeau et al., 2018; Pissarides, 2009), then the worker may be able to bargain over
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how much of these costs are reflected in equilibrium wages, effectively improving her threat point.1

We ultimately estimate b to match the volatilities of unemployment and vacancies in the data.
Following Ljungqvist and Sargent (2017), what matters for this estimation is the size of b relative to
the marginal product of labor. The decomposition of b into its underlying components is irrelevant.
In addition, it is misleading to only model a subset of the possible components of b. For example,
in a model in which b reflects mainly the value of the leisure component, Chodorow-Reich and
Karabarbounis (2016) show the resulting pro-cyclicality of the worker’s outside option dampens
labor market volatility even if its average level is high. Therefore, there must be another component
of b that is strongly countercyclical to offset the dampening effect. We make b an estimated param-
eter, since it is beyond the scope of this paper to decipher its exact microeconomic components.2

The equilibrium wage rate maximizes (Wt − Ut)
ηλ1−η

n,t , where η ∈ [0, 1] is the household’s
bargaining weight. The optimality condition implies Wt − Ut = ηΛt or, equivalently, λn,t = (1−
η)Λt. To derive the equilibrium wage, plug (20) in for λn,t and combine the two conditions to obtain

wt = η((1− α)yt/nt + Et[xt+1(1− χst+1)ft+1λn,t+1]) + (1− η)b. (22)

The wage rate in period t is a weighted average of the firm’s value of a new match and the worker’s
outside option b. The firm’s value of a new worker includes the additional output produced plus the
discounted expected value of the foregone vacancy cost net of separations that occur in period t+1.

Equilibrium The aggregate resource constraint is given by

ct + it + κvt = yt. (23)

A competitive equilibrium includes sequences of quantities {ct, it, nt, kt, yt, ut, ust , vt, qt, λ0,t}∞t=0,
prices {wt, rkt }∞t=0, and exogenous variables {at, st}∞t=1 that satisfy (1), (2), (5)-(8), (13)-(15), (19)-
(21), (22), and (23), given the initial conditions {k−1, n−1, a−1, s−1} and shocks {εa,t, εs,t}∞t=0.

3 DATA AND ESTIMATION PROCEDURE

This section begins by describing our data and the empirical targets in our estimation. It then out-
lines our new identification scheme and provides a detailed account of our estimation methodology.

3.1 EMPIRICAL TARGETS The model is disciplined using a balanced sample from 1955Q1-
2019Q4. Appendix A provides a description of our data sources and how they were transformed.

1In the alternative-offer bargaining protocol of Hall and Milgrom (2008), the worker’s bargaining position is
stronger when firms incur higher costs from delaying the period in which the equilibrium wage is agreed upon.

2Mortensen and Nagypal (2007) combine multiple components of b to generate realistic labor market volatility.
Costain and Reiter (2008) show that search and matching models struggle to simultaneously match labor market
volatilities and the responses to changes in labor market policies such as unemployment insurance benefits. Resolving
this issue is outside our identification strategy since we do not need to model how labor market policies may affect b.
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Labor Market Moments The job finding rate, ft = 1 − (Ut+1 − U s
t+1)/Ut is based on Shimer

(2005), where Ut is total unemployed and U s
t is the subset who are unemployed 1 month or less.

Following Shimer (2012), the monthly job separation rate is st ≡ 1− exp(−s̃t), where s̃t satisfies

Ut+1 = (1− e−f̃t−s̃t)s̃tLFt/(f̃t + s̃t) + e−f̃t−s̃tUt,

LFt is the labor force, and f̃t ≡ − log(1 − ft). The unemployment rate is ut = Ut/LFt. The
vacancy rate vt is based on the series in Barnichon (2010) until 2000, after which it is equal to job
openings as a share of the labor force in the Job Openings and Labor Turnover Survey. These series
correct for trends in the print and online help-wanted indexes published by the Conference Board.
The rates are converted to a quarterly frequency by averaging across the months in each quarter.

Following Shimer (2005), labor productivity is output per job in the non-farm business sector,
while the wage rate is the ratio of labor compensation to employment in the non-farm business
sector. To remove time trends, we filter the data following Hamilton (2018) (henceforth, Hamilton)
by regressing each variable on its most recent four lags after an 8 quarter window. We use this
approach over the more common Hodrick and Prescott (1997) filter because Hodrick (2020) shows
the Hamilton filter performs better when time series, such as these, are first difference stationary.

Using these time series, we compute the following estimation targets: the means of the quar-
terly unemployment, job finding, and job separation rates, the standard deviations of the unem-
ployment and vacancy rates, the standard deviation and autocorrelation of the job separation rate,
the standard deviation and autocorrelation of labor productivity, the cross-correlation between la-
bor productivity and the job separation rate, and the elasticity of wages with respect to productivity
(computed as the slope coefficient from regressing log wages on an intercept and log productivity).

Goods Market Moments In addition to the 11 labor market moments, we target the standard
deviations and autocorrelations of consumption and investment growth. Consumption includes
expenditures on services and nondurables. Investment is composed of durable consumption and
private fixed investment. The growth rates are computed as quarter-over-quarter log differences.

3.2 IDENTIFICATION Before estimating the model, we first describe the mapping between the
model parameters and moments that are measurable in the data. We estimate 12 model parameters:
b, ι, η, κ, χ, s̄, ρs, σs, ρa, σa, σa,s, ν. While these parameters are jointly estimated, we can heuristi-
cally describe how each parameter is identified from specific moments that we compute in the data.

Table 1 summarizes the identification scheme. The outside option b governs the economy’s
“fundamental surplus fraction” (Ljungqvist and Sargent, 2017), defined as the upper bound on the
fraction of a worker’s output that can be allocated to vacancy creation. It is now well understood
that a small fundamental surplus fraction is crucial to deliver realistically large volatilities of un-
employment and vacancies (Hagedorn and Manovskii, 2008; Ljungqvist and Sargent, 2017). To
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Parameters Identifying Moments

b, ι SD(u), SD(v)
η Cov(w, a)/V ar(a)
κ, χ E(u), E(f)
s̄, ρs, σs, ρa, σa, σa,s E(s), AC(s), SD(s), AC(a), SD(a), Corr(a, s)
ν SD(c), SD(i), AC(c), AC(i)

Table 1: Identification heuristic. E, SD, V ar, AC, Corr, Cov denote the mean, standard deviation, vari-
ance, autocorrelation, cross-correlation, and covariance over our balanced sample from 1955Q1-2019Q4.

see this, consider the steady-state vacancy creation condition in a model without capital (α = 0),

κ

q̄
=

(1− η)(ā− b)
1− β(1− s̄) + ηβ(1− χs̄)f̄

, (24)

where bars denote steady states. The elasticity of tightness with respect to productivity is given by,

ε̄θ,a =
ā

ā− b
× 1− β(1− s̄) + ηβ(1− χs̄)f̄
ε̄m,us(1− β(1− s̄)) + ηβ(1− χs̄)f̄

, (25)

where (ā − b)/ā is the fundamental surplus fraction and ε̄m,us is the steady-state elasticity of
matches with respect to the mass of unemployed searching. The second term in this expression
is near unity since β(1 − s̄) ≈ 1 at a monthly frequency. Therefore, to generate a large response
of tightness (and hence unemployment and vacancies) to changes in productivity, the fundamental
surplus fraction must be small, which requires that b is close to the marginal product of labor ā.
A small fundamental surplus fraction makes the fundamental surplus very sensitive to changes in
productivity, which causes volatile changes in the resources allocated to vacancy creation. Hence,
we estimate b by targeting the standard deviations of unemployment and vacancies in the data.

While b affects the overall level of labor market volatility, we now show that ι affects the relative
volatilities of vacancies and unemployment. First note that our matching function specification
implies that ε̄m,us = f̄ ι, where f̄ is the steady-state job finding rate. Therefore, given an average
job finding rate (that we target using other parameters), ι pins down the elasticity of matches with
respect to unemployed searching.3 To see the role that ε̄m,us plays, we compute the elasticities of
unemployment and vacancies with respect to tightness in the simplified model, which are given by4

ε̄u,θ = −(1− ū)(1− ε̄m,us)/(1− χf̄), (26)

ε̄v,θ = 1− (1− ū)(1− ε̄m,us)/(1− χf̄). (27)

As ε̄m,us increases, the responsiveness of vacancies to changes in tightness grows relative to the

3Our argument also applies to the Cobb-Douglas matching function mt = µ(ust )
αv1−αt . In this case, ε̄m,us = α.

4These come from differentiating the steady-state conditions ū = s̄(1− χf̄)/(s̄(1− χf̄) + f̄) and v̄ = θ̄ūs.
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responsiveness of unemployment. Intuitively, when the elasticity is higher, a given increase in
matches requires a smaller increase in unemployed searching, and hence in unemployment. There-
fore, when matches fluctuate, unemployment fluctuates less relative to vacancies. Hence, we esti-
mate ι by targeting the relative standard deviations of unemployment and vacancies in the data.

Recall from (22) that η governs the responsiveness of wages to changes in the marginal product
of labor, which is driven by labor productivity. Hence, we follow Hagedorn and Manovskii (2008)
and estimate η by targeting the empirical elasticity of wages with respect to labor productivity.

The last two labor market parameters κ and χ are estimated by targeting the average unemploy-
ment rate and job finding rate. To see this mapping, consider the following steady-state conditions

f̄ = θ̄/(1 + θ̄ι)1/ι, (28)

(κ/q̄)(1− β(1− s̄) + ηβ(1− χs̄)f̄) = (1− η)(ā− b), (29)

ū = s̄(1− χf̄)/(s̄(1− χf̄) + f̄). (30)

Given ι, targeting the average job finding rate identifies the average tightness θ̄ from (28), and
hence q̄ = f̄/θ̄. Combining with a target for average unemployment, we can then solve (29) and
(30) for κ and χ, given all of the other parameters. The parameters governing the exogenous pro-
cesses s̄, ρs, σs, ρa, σa, ρa,s have empirical counterparts in the data, so we estimate these parameters
by directly targeting these moments. Finally, we estimate the capital adjustment cost parameter ν
by targeting the standard deviations and autocorrelations of investment and consumption growth.

3.3 ESTIMATION PROCEDURE First, we externally set three parameters in line with the business
cycle literature. The time discount factor, β, is set to 0.9983, which implies an annual real interest
rate of 2%. The capital depreciation rate, δ = 0.0077, matches the annual average rate on private
fixed assets and consumer durable goods converted to a monthly rate. The income share of capital,
α = 0.3845, equals the complement of the quarterly labor share in the non-farm business sector.

The 15 target moments are stored in Ψ̂D
T and estimated using a two-step Generalized Method

of Moments (GMM) estimator with a balanced sample of T = 260 quarters. Given the GMM esti-
mates, we estimate our model with Simulated Method of Moments (SMM) to account for potential
short-sample bias. For parameterization ϑ and shocks E = {a, s}, we solve the log-linear model
using Sims (2002) gensys algorithm and simulate it R = 1,000 times for T periods. The model
analogues of the target moments are the median moments across the R simulations, Ψ̄M

R,T (θ, E).
The parameter estimates, ϑ̂, are obtained by minimizing the following loss function:

J(ϑ, E) = [Ψ̂D
T − Ψ̄M

R,T (ϑ, E)]′[Σ̂D
T (1 + 1/R)]−1[Ψ̂D

T − Ψ̄M
R,T (ϑ, E)],

where Σ̂D
T is the diagonal of the GMM estimate of the variance-covariance matrix. We use Monte
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Carlo methods to calculate the standard errors on the parameter estimates. For different sequences
of shocks, we re-estimate the structural modelNh = 100 times and report the mean and (5, 95) per-
centiles of the parameter estimates.5 Appendix B provides additional details on the methodology.

4 QUANTITATIVE ANALYSIS

In this section, we first report the estimated parameters and demonstrate the quantitative fit of our
model in both a linear and nonlinear setting. We then use the estimated model as a lens to study
the transmission of job separation rate shocks and the propagation of endogenous uncertainty.

4.1 PARAMETER ESTIMATES AND MODEL FIT Table 2 reports the targeted empirical and sim-
ulated moments across a range of specifications. We begin by discussing the estimates from the
log-linear version of our model. To gauge the success of our identification scheme for the labor
market parameters, we first compare the data to the model when we only target labor market mo-
ments. As shown in the “Linear-Labor” column, the linear model is able to perfectly match the
data for each targeted moment, indicating the strength of our proposed identification scheme.

The “Linear-Labor” column of Table 3 reports the corresponding estimated parameters. The
mean estimates are well within conventional ranges and the standard errors are small. Relative
to Hagedorn and Manovskii (2008), we estimate a considerably larger bargaining weight η =

0.46 (cf., η = 0.052). The higher estimate of η is due to the presence of capital in our model,
which weakens the response of the marginal product of labor to changes in labor productivity. The
estimate of κ implies that vacancy creation costs account for less than 1% of output on average.
Relatedly, our estimate of b = 0.96 is consistent with these small costs and the small fundamental
surplus Ljungqvist and Sargent (2017) show is required to generate realistic labor market volatility.

Our identification strategy yields an estimate for χ = 0.53. This value is remarkably close to
the assumption of χ = 0.5 that Shimer (2005) makes when computing his empirical measure of the
job separation rate series. Following his intuition, χ = 0.53 implies newly separated workers have
around two weeks on average to find another job before the next measurement of unemployment.6

Having established the success of our identification scheme, we now examine the first column
of the “Labor & Goods” moments section of Table 2. In this specification, we estimate all param-
eters including ν using the full list of moments in Table 1. The first takeaway is that the model’s
performance in the labor market dimension remains strong when we also target the goods market
moments. The t-statistics for the null hypothesis that a model-implied moment equals its empirical
counterpart remain close to zero. The estimated model parameters are also essentially unchanged.

5Ruge-Murcia (2012) applies SMM to several nonlinear business cycle models and finds that asymptotic standard
errors tend to overstate the variability of the estimates. This underscores the importance of using Monte Carlo methods.

6We compute our own series for the empirical job separation rate using the continuous time methodology in Shimer
(2012). Therefore, our finding that χ is close to 0.5 is not simply a result of our construction of the separation rate.
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Labor Labor & Goods

Moment Data Linear Linear θ̄ = 0.634 Nonlinear

E(u) 5.89 5.89 5.92 5.95 6.18
(0.00) (0.13) (0.24) (1.26)

E(f) 42.14 42.14 42.02 43.36 40.37
(0.00) (−0.11) (1.08) (−1.57)

E(s) 3.27 3.27 3.27 3.27 3.27
(0.00) (−0.01) (−0.01) (−0.02)

SD(u) 22.25 22.25 22.70 30.97 23.04
(0.00) (0.24) (4.79) (0.43)

SD(v) 22.99 22.99 22.95 16.15 22.92
(0.00) (−0.02) (−3.57) (−0.04)

SD(s) 8.66 8.66 8.67 8.67 8.66
(0.00) (0.01) (0.01) (0.00)

SD(a) 2.63 2.63 2.68 2.68 2.67
(0.00) (0.27) (0.27) (0.25)

SD(∆ log c) 0.51 0.16∗ 0.50 0.56 0.53
(−8.36) (−0.22) (1.10) (0.32)

SD(∆ log i) 2.12 2.88∗ 2.06 2.23 2.13
(4.22) (−0.33) (0.61) (0.02)

AC(s) 0.79 0.79 0.79 0.79 0.79
(0.00) (0.09) (0.09) (0.08)

AC(a) 0.90 0.90 0.91 0.91 0.91
(0.00) (0.34) (0.34) (0.34)

AC(∆ log c) 0.29 0.45∗ 0.23 0.23 0.24
(1.93) (−0.76) (−0.71) (−0.65)

AC(∆ log i) 0.44 0.21∗ 0.21 0.22 0.22
(−3.17) (−3.10) (−3.05) (−2.95)

Corr(s, a) −0.47 −0.47 −0.47 −0.47 −0.47
(0.00) (−0.01) (−0.01) (0.03)

Cov(w, a)/V ar(a) 0.47 0.47 0.45 0.41 0.43
(0.00) (−0.30) (−0.94) (−0.60)

J 0.00 10.72 49.42 14.01

Table 2: Model fit for targeted moments. The t-statistic for the null hypothesis that a model-implied moment
equals its empirical counterpart is shown in parentheses. The first column reports the GMM estimates of
the empirical targets. The second column sets ν →∞ and only targets the labor market moments (asterisks
indicate non-targeted moments). The third column includes the goods market moments and estimates ν. The
fourth column sets ι to target average labor market tightness, θ̄ = 0.634, following Hagedorn and Manovskii
(2008) and sets κ to retain the mean finding rate in the data. The final column reports moments from the
nonlinear model using the parameter estimates from the linear model. All monthly time series are averaged
to a quarterly frequency and the data is detrended using a Hamilton (2018) filter with an 8 quarter window.

Second, targeting good market moments and estimating ν improves the model’s ability to match
the volatilities and autocorrelations of consumption and investment growth.7 When only targeting
the labor market moments, the estimated model fails to reproduce the standard deviations and auto-

7Our model is deliberately parsimonious to highlight our main points related to the labor market. Other features
such as home production, habits in preferences, and variable capital utilization could further improve the model’s fit.
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Labor Labor & Goods

Parameter Linear Linear θ̄ = 0.634

s̄ 0.0325 0.0325 0.0325
(0.0325, 0.0326) (0.0325, 0.0326) (0.0325, 0.0326)

ρa 0.9533 0.9577 0.9577
(0.9524, 0.9542) (0.9569, 0.9586) (0.9569, 0.9586)

σa 0.0073 0.0071 0.0071
(0.0073, 0.0074) (0.0070, 0.0073) (0.0070, 0.0073)

ι 0.5955 0.6046 1.1419
(0.5908, 0.6007) (0.5966, 0.6117) (1.1419, 1.1419)

η 0.4621 0.4784 0.4784
(0.4445, 0.4836) (0.4155, 0.5543) (0.4155, 0.5543)

b 0.9599 0.9622 0.9622
(0.9596, 0.9603) (0.9617, 0.9626) (0.9617, 0.9626)

κ 0.0214 0.0202 0.0572
(0.0196, 0.0229) (0.0150, 0.0258) (0.0421, 0.0721)

χ 0.5334 0.5336 0.5336
(0.5278, 0.5388) (0.5274, 0.5406) (0.5274, 0.5406)

ρs 0.8940 0.8960 0.8960
(0.8927, 0.8952) (0.8937, 0.8982) (0.8937, 0.8982)

σs 0.0414 0.0410 0.0410
(0.0412, 0.0416) (0.0405, 0.0415) (0.0405, 0.0415)

ρas −0.0999 −0.1002 −0.1002
(−0.1016,−0.0983) (−0.1030,−0.0969) (−0.1030,−0.0969)

ν − 4.9665 4.9665
(4.9196, 5.0122) (4.9196, 5.0122)

Table 3: Mean estimates of the model parameters. The (5, 95) percentiles are shown in parentheses. Each
column corresponds to a different estimation specification. The first column sets ν → ∞ and only targets
the labor market moments. The second column includes the goods market moments and estimates ν. The
final column sets ι to target average labor market tightness, θ̄ = 0.634, following Hagedorn and Manovskii
(2008) and sets κ to retain the mean finding rate in the data (the remaining parameters are not re-estimated).

correlations of consumption and investment growth in the data. In the fully estimated model, only
the autocorrelation of investment growth remains significantly different from the data. Given this
success, we conduct the rest of our analyses using the estimation that targets all 15 data moments.

Matching Function Identification We estimate the matching function curvature parameter ι so
the model produces empirically consistent relative volatilities of unemployment and vacancies.
This approach contrasts with the literature, which often calibrates ι to hit a steady-state target. To
demonstrate the advantages of our approach, we compare our results to a model calibrated in the
style of Hagedorn and Manovskii (2008). Holding other parameters fixed at their estimated values,
we set ι to target an average tightness of θ̄ = 0.634 and set κ to retain an average finding rate in the
data. The “θ̄ = 0.634” columns of Tables 2 and 3 show the estimated moments and parameters.

Under this calibration, labor market volatility remains substantially elevated as a result of the
small fundamental surplus fraction. However, the relative volatilities of unemployment and va-
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cancies are now far from the data. The model over-predicts unemployment volatility and under-
predicts vacancy volatility. This discrepancy is explained by the matching elasticities implied by
the baseline estimation (ε̄m,us = 0.59) and alternate calibration (ε̄m,us = 0.37). The lower elasticity
implies that unemployment volatility must increase relative to vacancy volatility. As a result, the
model is unable to match these key targets, even though it still performs well in other dimensions.8

Furthermore, our estimate of ε̄m,us is in the middle of the plausible range of elasticities (0.5-0.7)
highlighted by Mortensen and Nagypal (2007), while the alternate elasticity is far below the range.

Finally, we stress that our approach is not inconsistent with also targeting an average value for
labor market tightness or, equivalently, long run values for the job finding and job filling rates.
To achieve this, we could augment the matching function with an efficiency parameter µ so that
mt = µustvt/((u

s
t)
ι + (vt)

ι)1/ι. We could then estimate µ to target an average value for θ using
the steady-state relationship f̄ = µθ̄/(1 + θ̄ι)1/ι, while still using ι to attain a matching elasticity
ε̄m,us = f̄ ι/µι that implies the best fit of the unemployment and vacancy volatilities in the data.9

Non-targeted moments To further validate our estimated framework, we report a range of non-
targeted moments. Table 4 shows several key labor market statistics. We report the results when
only the labor market moments in Table 1 are targeted, but we focus on the case that targets all
15 moments. The model produces a range of non-targeted labor market moments that are close to
their empirical counterparts. In particular, the model almost exactly matches the volatility of the job
finding rate and closely matches the volatility of the net unemployment inflow rate zt = st(1−χft).
In addition, the model generates realistic persistence in unemployment, vacancies, and the job
finding and inflow rates, as indicated by their high autocorrelations, which are all close to the data.

These findings further emphasize the advantage of how we estimate ι. Comparing results to
the alternate calibration that sets θ̄ = 0.634, the job finding rate becomes far too volatile due to the
excess volatility of unemployment, while vacancies are no longer persistent enough. The additional
vacancy persistence in our baseline model is generated by the higher matching elasticity, which
strengthens the propagation mechanism from the underlying persistent shocks. The baseline model
also generates a realistic decomposition of the fluctuations of unemployment into inflows and
outflows. Following Shimer (2012), we compute the share of unemployment volatility explained
by outflows (i.e., the job finding rate) by regressing s̄/(s̄ + ft) on the unemployment rate. This
yields an outflow share of 69% in the model, which accords well with the 73% reported in the data.

We now turn to Table 5, which reports the correlations analyzed by Shimer (2005). The base-
line model closely matches most of the cross-correlations in the data. For example, it matches the

8Hagedorn and Manovskii (2008) calibrate their model at a weekly frequency. Their calibration implies a matching
elasticity of ε̄m,us = 0.45 that results in counterfactually high vacancy volatility relative to unemployment volatility.

9Using a Cobb-Douglas matching function mt = µuαt v
1−α
t , Shimer (2005) exploits the same feature to argue that

average tightness is irrelevant since µ can always target it. We adopt his logic by normalizing µ to unity in our model.
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Labor Labor & Goods

Moment Data Linear Linear θ̄ = 0.634 Nonlinear

E(z) 2.55 2.55 2.55 2.54 2.57
(−0.01) (0.02) (−0.08) (0.24)

SD(f) 15.87 15.46 15.81 22.94 17.00
(−0.20) (−0.03) (3.41) (0.54)

SD(z) 12.21 10.98 11.08 12.64 10.92
(−1.26) (−1.16) (0.44) (−1.33)

AC(f) 0.90 0.93 0.93 0.93 0.92
(0.88) (0.83) (0.78) (0.59)

AC(u) 0.92 0.93 0.93 0.94 0.94
(0.35) (0.35) (0.56) (0.43)

AC(v) 0.93 0.87 0.87 0.75 0.84
(−2.09) (−2.27) (−6.15) (−2.98)

AC(z) 0.87 0.82 0.83 0.84 0.82
(−1.37) (−1.26) (−0.77) (−1.38)

Cov( s̄
s̄+f , u)/V ar(u) 72.90 69.15 69.15 73.66 72.27

(−0.27) (−0.27) (0.06) (−0.05)

Table 4: Model fit for non-targeted moments. The t-statistic for the null hypothesis that a model-implied
moment equals its empirical counterpart is shown in parentheses. The first column reports the GMM esti-
mates of the non-targeted data moments. The second column sets ν →∞ and only targets the labor market
moments in Table 1. The third column includes the goods market moments in Table 1 and estimates ν. The
fourth column sets ι to target average labor market tightness, θ̄ = 0.634, following Hagedorn and Manovskii
(2008) and sets κ to retain the mean finding rate in the data. The final column reports moments from the
nonlinear model using the parameter estimates from the linear model. All monthly time series are averaged
to a quarterly frequency and the data is detrended using a Hamilton (2018) filter with an 8 quarter window.

Beveridge curve (i.e., the correlation between vacancies and unemployment). It is also successful
at producing reasonable cross-correlations with vacancies, though the correlation with the job sep-
aration rate is quite small relative to the data.10 Importantly, our identification scheme produces
a closer fit of the data than the alternate calibration along these key dimensions. For example,
targeting θ̄ = 0.634 results in a much flatter Beveridge curve since unemployment fluctuates more
than vacancies. Furthermore, vacancies become positively correlated with the job separation rate.

Nonlinearities Recent work by Petrosky-Nadeau and Zhang (2017) and Petrosky-Nadeau et al.
(2018) shows that a calibrated version of the search and matching model with productivity shocks
produces significant nonlinearities. Given their findings, we complement our results from the linear
version of our model by studying how our estimated model behaves when it is solved nonlinearly.

We solve the nonlinear model with the policy function iteration algorithm described in Richter
et al. (2014), which is based on the theoretical work on monotone operators in Coleman (1991).
Using the linear solution as an initial conjecture, the algorithm minimizes the Euler equation errors

10Similar to Shimer (2005) and Hagedorn and Manovskii (2008), the baseline model overstates the correlation
between unemployment and labor productivity in the data. However, as Barnichon (2012) shows, the empirical corre-
lation switched sign from negative to positive in the 1980s, making it difficult to draw direct comparisons to the data.
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Labor Labor & Goods

Moment Data Linear Linear θ̄ = 0.634 Nonlinear

Corr(u, v) −0.77 −0.78 −0.78 −0.68 −0.77
(−0.19) (−0.23) (1.88) (0.06)

Corr(u, f) −0.85 −0.94 −0.95 −0.97 −0.94
(−3.31) (−3.38) (−4.14) (−3.15)

Corr(u, s) 0.44 0.59 0.60 0.52 0.58
(1.69) (1.72) (0.94) (1.54)

Corr(u, a) −0.28 −0.90 −0.92 −0.92 −0.91
(−5.66) (−5.85) (−5.84) (−5.73)

Corr(v, f) 0.82 0.94 0.94 0.84 0.93
(3.87) (3.83) (0.79) (3.57)

Corr(v, s) −0.39 −0.07 −0.08 0.05 −0.07
(3.59) (3.45) (4.91) (3.59)

Corr(v, a) 0.12 0.82 0.84 0.73 0.82
(6.45) (6.65) (5.57) (6.45)

Corr(f, s) −0.25 −0.34 −0.35 −0.34 −0.33
(−0.72) (−0.82) (−0.77) (−0.64)

Corr(f, a) 0.20 0.91 0.93 0.92 0.91
(6.09) (6.29) (6.17) (6.09)

Table 5: Model fit for non-targeted correlations. The t-statistic for the null hypothesis that a model-implied
moment equals its empirical counterpart is shown in parentheses. The first column reports the GMM esti-
mates of the non-targeted data moments. The second column sets ν →∞ and only targets the labor market
moments in Table 1. The third column includes the goods market moments in Table 1 and estimates ν. The
fourth column sets ι to target average labor market tightness, θ̄ = 0.634, following Hagedorn and Manovskii
(2008) and sets κ to retain the mean finding rate in the data. The final column reports moments from the
nonlinear model using the parameter estimates from the linear model. All monthly time series are averaged
to a quarterly frequency and the data is detrended using a Hamilton (2018) filter with an 8 quarter window.

on every node in the discretized state space. It then computes the maximum distance between the
policy functions across all nodes and iterates until that distance falls below the tolerance criterion.

Two aspects of the solution method require special attention. First, we adapt the Rowenhorst
method to discretize the correlated separation rate and labor productivity processes into two inde-
pendent N -state Markov chains following Galindev and Lkhagvasuren (2010). Second, we follow
Garcia and Zangwill (1981) and introduce an auxiliary variable that is continuous in the state of
the economy to ensure that vacancies do not violate the non-negativity constraint. Appendix C
provides detailed descriptions of these features as well as the policy function iteration algorithm.

The last columns in Tables 2, 4, and 5 show the targeted and non-targeted moments implied by
the nonlinear model under the parameter estimates from the linear model when labor and goods
moments are targeted. Without exception, the moments from the nonlinear model are very similar
to the moments from the linear model. While the overall fit of the model would improve slightly if
we re-estimated the parameters, these results indicate that there would be little change. Therefore,
we will continue to use the linear parameter estimates when further analyzing the nonlinear model.
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(a) Linear Model Forecast Error Variance Decomposition
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(b) Nonlinear Model Generalized Forecast Error Variance Decomposition

Figure 1: Forecast error variance decompositions. Each plot decomposes the forecast error variance into
variation from job separation rate shocks, labor productivity shocks, and their interaction. Values are then
normalized by the sum of the components, since the three contributions will not necessarily sum to unity.
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4.2 ROLE OF JOB SEPARATION RATE SHOCKS Our model includes a stochastic process for job
separation rate shocks based on their careful measurement from the underlying employment flows
data. Given this, we ask what role job separation rate shocks play in driving and propagating the
business cycle. We begin by establishing that variation in the job separation rate is responsible for
a significant fraction of business cycle variation in the economy. To show this, the top panel in Fig-
ure 1 reports the normalized forecast error variance decomposition for output, the job finding rate,
unemployment, and vacancies in the linear model. In each plot, we decompose the volatility into
three components attributable to variation in the job separation rate, labor productivity, and their
interaction. The forecast error variance is normalized by the sum of these three components, since
the correlation between the shocks implies that the contributions will not necessarily sum to unity.11

In all cases, variation in only the job separation rate accounts for at least 20% of the overall
volatility. In particular, job separation rate shocks account for 60% of short-run unemployment
volatility and close to 50% of the volatility at longer horizons. This result appears to contrast
with the analysis in Shimer (2012), which concludes that separation rate variation accounts for no
more than 25% of unemployment volatility. We emphasize that our model is consistent with this
reduced-form result (see the last row of Table 4) but are able to go a step further by decomposing
unemployment into its structural components. Importantly, our decomposition shows that job sep-
aration rate shocks account for about 30% of the variation in the job finding rate. Once we account
for this, the contribution of separation rate shocks to unemployment volatility naturally increases.

We compute the same decomposition in the nonlinear model, as shown in the bottom panel
of Figure 1.12 In this case, the contribution of separation rate shocks to unemployment variation
declines but remains substantial at 40%. The fall relative to the linear model is primarily driven by
the stronger contribution of the shock correlation (25% in the nonlinear model vs. 14% in the linear
model). Intuitively, the nonlinear model endogenously generates feedback between the two shocks
in addition to their exogenous correlation. Furthermore, this contribution of separation rate shocks
to unemployment volatility is consistent with Barnichon (2012) who estimates a reduced-form
decomposition that controls for the dependence of the job finding rate on the separation rate.

Impulse Responses The left column of Figure 2 plots the impulse responses to two types of job
separation rate shocks in the linear and nonlinear model. Once again, we begin by discussing the
results from the linear model. Under the “interacted” shock, labor productivity responds according
to the estimated correlation coefficient ρas. With the “pure” shock, the correlation between labor
productivity and job separations is turned off so only the separation rate responds to the shock.13

In both cases, the shock implies the separation rate increases by two standard deviations on impact.

11Isakin and Ngo (2020) use the same approach to normalize the forecast error variance for a fully nonlinear model.
12The nonlinear decomposition follows Lanne and Nyberg (2016). Appendix D describes our implementation.
13The “pure shock” solves for {εs,t+1, εa,t+1} so ρasσaεa,t+1 + σsεs,t+1 = 2σs and ρasσsεs,t+1 + σaεa,t+1 = 0.
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Figure 2: Impulse responses to a +2SD shock in percent (%) or percentage point (pp) deviations from steady
state. The “Pure Shock” only affects the exogenous variable being shocked, while the “Interacted Shock”
includes the cross-effect caused by the correlation between the job separation rate and labor productivity.

19



BERNSTEIN, RICHTER & THROCKMORTON: BUSINESS CYCLE MECHANICS

Consider first the more empirically relevant case of the “interacted shock”. In response to
a 0.3 percentage point increase in the separation rate and the associated 0.8% decrease in labor
productivity, macroeconomic activity declines. Output falls by 0.8% and the unemployment rate
increases by 0.5 percentage points. The response of vacancies reflects two opposing forces. First,
the decline in labor productivity lowers the profitability of new hires and causes a drop in vacancy
creation. Second, the increase in unemployment raises the job filling rate, lowering the marginal
cost of vacancy creation. The drop in marginal costs causes vacancies to quickly rebound before
declining again. As a result of the increase in unemployment and decline in vacancy creation, the
job finding rate drops by 1.6 percentage points in response to the positive separation rate shock.

When we artificially shut down the correlation between job separations and labor productivity,
the macroeconomic responses are qualitatively different. Without the decline in labor productivity,
vacancy creation increases in response to the shock since the job filling rate is higher. As a result,
the job finding rate slightly increases on impact. Together, these responses mute the increase
in unemployment and decline in output stemming from the shock. These results highlight the
importance of accounting for the correlation between the job separation rate and labor productivity
when analyzing the transmission of separation rate shocks.14 While pure separation rate shocks
produce counterfactual positive co-movements between unemployment and vacancies (Shimer,
2005), allowing for a realistic degree of correlation with labor productivity corrects this behavior
(Table 5 shows the unconditional correlation of unemployment and vacancies is close to the data).

To quantitatively assess the degree of state-dependence, Figure 2 compares the impulse re-
sponses from the linear model to generalized impulse responses from the nonlinear model, com-
puted according to Koop et al. (1996). As expected, when the economy is initialized in steady
state (u0 = 6%), the nonlinear responses are nearly identical to the linear responses. However, the
economy becomes more sensitive to shocks in a recession where the initial unemployment rate is
10%. An increase in either the job separation rate or labor productivity leads to larger responses of
unemployment and hence output. The larger responses are due to a downward rigidity of marginal
costs discussed in the context of productivity shocks by Petrosky-Nadeau et al. (2018). Figure 2
shows how this mechanism also applies to job separation rate shocks. When unemployment is
high, the marginal cost of vacancy creation is depressed due to a high job filling rate. In response
to a positive separation rate shock and the associated decline in labor productivity, the marginal
cost runs into a downward rigidity since a drop in vacancies has only a minor effect on the job
filling rate. Hence job creation falls more than in normal times, leading to a larger decline in the
job finding rate. With more people out of work, unemployment rises and output declines more.

14Den Haan et al. (2000) provide a mechanism in which labor productivity shocks drive endogenous movements in
the job separation rate. Our analysis suggests that mechanisms with the opposite direction of causality are also relevant.
While we are deliberately agnostic about the sources of this correlation, our results suggest that future work could focus
on developing micro-foundations for mechanisms that link labor productivity to changes in the rate of job separation.
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4.3 ENDOGENOUS UNCERTAINTY The state-dependence in the nonlinear impulse responses
is evidence that shocks to the first moments of exogenous variables induce changes in higher or-
der moments of endogenous variables. For example, the conditional distribution of future output
growth will depend on the state of the economy and the conditional distribution of exogenous
shocks. This dependence generates endogenous uncertainty about the distribution of future output
growth and allows us to relate our theoretical model to a burgeoning empirical literature that esti-
mates the endogenous response of macroeconomic uncertainty to exogenous first moment shocks.

To connect to recent empirical work (Jurado et al., 2015; Ludvigson et al., 2020), we define un-
certainty as the expected volatility of the h-month ahead forecast error for output growth given by

U∆ log y
t,t+h =

√
Et[(∆ log yt+h − Et[∆ log yt+h])2].

We will refer to structural fluctuations in this statistic as time-varying endogenous uncertainty.
We measure uncertainty in the data as the quarterly average of the monthly real uncertainty

series (h = 1) from Ludvigson et al. (2020). This series is a sub-index of the macro uncertainty
series from Jurado et al. (2015) that accounts for 73 real activity variables such as measures of
output, income, housing, consumption, and inventories. To construct the uncertainty series, most
variables are transformed into growth rates and standard normalized. Repeated simulations of a
factor augmented vector autoregression are used to obtain estimates of uncertainty for each real
variable and then averaged to generate the aggregate real uncertainty series. The benefit of this
series is that it distinguishes between uncertainty and ex-post volatility. To make the units from our
model directly comparable to the real uncertainty series, we calculate SD(U∆ log y

t,t+1 )/SD(∆ log yt).

Moment Data Nonlinear Model Moment Data Nonlinear Model

SD(∆ log y) 0.86 1.03 SD(U∆ log y
t,t+1 ) 5.68 4.85

Corr(∆ log y,U∆ log y
t,t+1 ) −0.37 −0.13 AC(U∆ log y

t,t+1 ) 0.84 0.97

Table 6: Non-targeted uncertainty moments. The moments in the data are computed from the quarterly
average of the monthly real uncertainty series (h = 1) from Ludvigson et al. (2020). The model-implied
moments are based on the linear parameter estimates when both the goods and labor moments are targeted.

Table 6 compares uncertainty moments in the data to simulations of the nonlinear model given
the mean parameter estimates from the linear model. The nonlinear model makes two noteworthy
predictions. First, the model predicts that output growth uncertainty is counter-cyclical, consistent
with the real uncertainty series in the data. Second, the volatility of output growth uncertainty is
close to its empirical counterpart. This result indicates that the degree of state-dependence shown
in Figure 2 is sufficient to endogenously generate most of the time-varying uncertainty in the data.
It is also consistent with Ludvigson et al. (2020), who show empirically that uncertainty about real
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activity is often an endogenous response to business cycles rather than an exogenous propagation.
Finally, we decompose the response of output growth uncertainty into its structural compo-

nents using the same decomposition applied in Figure 1b. We find job separation rate shocks alone
account for 37% of the volatility in output growth uncertainty. This demonstrates that exogenous
variation in the inflows to unemployment also have significant higher-order effects on the economy.

5 CONCLUSION

This paper shows an estimated real business cycle model with equilibrium unemployment is able to
replicate a wide range of empirical business cycle moments. Our identification strategy highlights
a new role for the elasticity of matches with respect to unemployment in generating realistic labor
market volatility in unemployment and vacancies. We use our model to emphasize the importance
of job separation rate shocks in driving unemployment volatility and also show that accounting for
their correlation with labor productivity is crucial to produce a realistic transmission mechanism.
Finally, we document that there is rich state-dependence in the responses to separation rate shocks,
which endogenously generates empirically consistent fluctuations in output growth uncertainty.

There are several directions one could extend our benchmark model. First, we have abstracted
from two margins that seem important for a complete account of business cycle labor market
dynamics: on the job search and labor force participation. Second, we have intentionally built
our insights on the foundation of existing representative household real business cycle models,
and as such have abstracted from household heterogeneity in income, consumption, and wealth.
Third, we have abstracted from nominal frictions, which would provide a role for monetary policy.
Introducing these features into our quantitative framework could be useful goals for future research.
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2. Gross Domestic Product: Implicit Price Deflator
Seasonally Adjusted, Quarterly, 2012=100 (DGDP@USNA)

3. Gross Domestic Product
Seasonally Adjusted, Quarterly, Billions of Dollars (GDP@USECON)

4. Personal Consumption Expenditures: Nondurable Goods
Seasonally Adjusted, Quarterly, Billions of Dollars (CN@USECON)

5. Personal Consumption Expenditures: Services
Seasonally Adjusted, Quarterly, Billions of Dollars (CS@USECON)

6. Private Fixed Investment
Seasonally Adjusted, Quarterly, Billions of Dollars (F@USECON)

7. Personal Consumption Expenditures: Durable Goods
Seasonally Adjusted, Quarterly, Billions of Dollars (CD@USECON)

8. Output Per Person, Non-farm Business Sector, All Persons,
Seasonally Adjusted, Quarterly, 2012=100 (LXNFS@USNA)

9. Labor Share, Non-farm Business Sector, All Persons,
Seasonally Adjusted, Quarterly, Percent (LXNFBL@USNA)

10. Compensation, Non-farm Business Sector, All Persons,
Seasonally Adjusted, Quarterly, 2012=100 (LXNFF@USNA)

11. Employment, Non-farm Business Sector, All Persons,
Seasonally Adjusted, Quarterly, 2012=100 (LXNFM@USNA)

12. Unemployed, 16 Years & Over
Seasonally Adjusted, Monthly, Thousands (LTU@USECON)

13. Civilian Unemployment Rate: 16 yr & Over
Seasonally Adjusted, Monthly, Percent (LR@USECON)

14. Civilian Labor Force: 16 yr & Over
Seasonally Adjusted, Monthly, Thousands (LF@USECON)

15. Civilians Unemployed for Less Than 5 Weeks
Seasonally Adjusted, Monthly, Thousands (LU0@USECON)

16. Net Stock: Private Fixed Assets, Billions of Dollars (EPT@CAPSTOCK)

17. Net Stock: Consumer Durable Goods, Billions of Dollars (EDT@CAPSTOCK)

18. Depreciation: Private Fixed Assets, Billions of Dollars (KPT@CAPSTOCK)

19. Depreciation: Consumer Durable Goods, Billions of Dollars (KDT@CAPSTOCK)
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We also use the Help Wanted Advertising Index (HWI) from Barnichon (2010), which is in units of
the labor force. This series corrects for online advertising and is available on the author’s website.
We applied the following transformations to the above data sources:

1. Per Capita Real Output Growth:

∆ log Yt = 100
(

log
(

GDPt

DGDPt+LN16Nt

)
− log

(
GDPt−1

DGDPt−1+LN16Nt−1

))
.

2. Per Capita Real Consumption Growth:

∆ logCt = 100
(

log
(

CNt+CSt

DGDPt+LN16Nt

)
− log

(
CNt−1+CSt−1

DGDPt−1+LN16Nt−1

))
.

3. Per Capita Real Investment Growth:

∆ log It = 100
(

log
(

Ft+CDt

DGDPt+LN16Nt

)
− log

(
Ft−1+CDt−1

DGDPt−1+LN16Nt−1

))
.

4. Vacancy Rate: HWI from 1954M1-2000M12 andLJJTLA/LF from 2001M1-2019M12.

5. Short-term Unemployed (U s): The redesign of the Current Population Survey (CPS) in
1994 reduced ust . To correct for this bias, we use IMPUMS-CPS data to scale ust by the ratio
of ust/ut for the first and fifth rotations groups to ust/ut across all rotation groups. In addition
to the 9 mandatory identification variables, we first extract the following: EMPSTAT (“Em-
ployment Status”), DURUNEMP (“Continuous weeks unemployed”) and MISH (“Month in
sample, household level”). Unemployed persons have EMPSTAT of 20, 21, or 22. Short-
term unemployed are persons who are unemployed and DURUNEMP is 5 or less. Incoming
rotation groups have MISH of 1 or 5. Using the final weights, WTFINL, we then calculate
unemployment rates conditional on the appropriate values of MISH and DURUNEMP. We
then apply the X-12 seasonal adjustment function in STATA to the time series for the ratio.
Finally, we take an average of the seasonally adjusted time series. This process yields an
average ratio of 1.1693, so U s equals LU0 before 1994 and 1.1693× LU0 after 1994.

6. Job-Finding Rate: ft = 1− (LTUt − U s
t )/LTUt−1.

7. Separation Rate: st = 1− exp(−s̃t), where s̃t satisfies

LTUt+1 =
(1− exp(−f̃t − s̃t))s̃tLFt

f̃t + s̃t
+ exp(−f̃t − s̃t)LTUt,

and f̃t = − log(1− ft).

8. Net Unemployment Inflow Rate: zt = U s
t /(LFt−1 − LTUt−1).

9. Real Wage: wt = 100× LXNFFt/(LXNFMt ×DGDPt)
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10. Capital Depreciation Rate:

δ = (KPT +KDT )/(EPT + EDT ).

All monthly time series are averaged to a quarterly frequency. The data is detrended using a
Hamilton filter with an 8 quarter window. All empirical targets are computed using quarterly data.

B ESTIMATION METHOD

The estimation procedure has two stages. The first stage estimates moments in the data using a 2-
step Generalized Method of Moments (GMM) estimator with a Newey and West (1987) weighting
matrix with 5 lags. The second stage is a Simulated Method of Moments (SMM) procedure that
searches for a parameter vector that minimizes the distance between the mean GMM estimates in
the data and short-sample predictions of the model, weighted by the diagonal of the GMM estimate
of the variance-covariance matrix. The second stage is repeated for many different draws of shocks
to obtain a sampling distribution for each parameter. The following steps outline the algorithm:

1. Use GMM to estimate the moments, Ψ̂D
T , and the diagonal of the covariance matrix, Σ̂D

T .

2. Use SMM to estimate the linear structural model. Given a random seed, h, draw a B + 3T

period sequence for each shock in the model, where B is a 1,000 period burn-in and 3T is
the sample size of the monthly time series. Denote the shock matrix by Eh = [εhs , ε

h
a]
B+3T
t=1 ).

For shock sequence h ∈ {1, . . . , Nh}, run the following steps:

(a) Specify a guess, θ̂0, for the Np estimated parameters and the covariance matrix, Σh,0
P .

For all i ∈ {1, . . . , Nm}, apply the following steps:

i. Draw θ̂i from a multivariate normal distribution centered at some mean parameter
vector, θ̄, with a diagonal covariance matrix, Σ0.

ii. Solve the linear model with Sims’s (2002) gensys algorithm given θ̂i. Repeat the
previous step if the solution does not exist or is not unique.

iii. Given Eh(r), simulate the monthly model R times for B + 3T periods. We draw
initial states from the ergodic distribution by burning off the first B periods. Ag-
gregate variables in levels by summing and aggregate rates by averaging to a quar-
terly frequency. For each repetition r, calculate the moments based on T quarters,
ΨM
T (θ̂i, Eh(r)), the same length as the quarterly data.

iv. Calculate the median moments across the R simulations,

Ψ̄M
R,T (θ̂i, Eh) = median{ΨM

T (θ̂i, Eh(r))}Rr=1,
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and evaluate the loss function:,

Jhi = [Ψ̂D
T − Ψ̄M

R,T (θ̂i, Eh)]′[Σ̂D
T (1 + 1/R)]−1[Ψ̂D

T − Ψ̄M
R,T (θ̂i, Eh)].

(b) Find the parameter draw θ̂0 that corresponds to min{Jhi }
Nd
i=1, and calculate Σh,0

P .

i. Find theNbest draws with the lowest Jhi . Stack the remaining draws in aNbest×Np

matrix, Θ̂h, and define Θ̃h = Θ̂h − 1Nbest×1

∑Nd

i=Nbest
θ̂hi /(Nbest).

ii. Calculate ΣP,0 = (Θ̃h)′Θ̃h/(Nbest).

(c) Minimize J with simulated annealing. For i ∈ {0, . . . , Nd}, repeat the following steps:

i. Draw a candidate vector of parameters, θ̂candi , where

θ̂candi ∼

θ̂0 for i = 0,

N(θ̂i−1, c0Σh,0
P ) for i > 0.

We set c0 to target an average acceptance rate of 50% across seeds.

ii. Under Step 2a, repeats Steps ii-iv.

iii. Accept or reject the candidate draw according to

(θ̂hi , J
h
i ) =


(θ̂candi , Jh,candi ) if i = 0,

(θ̂candi , Jh,candi ) if min(1, exp(Jhi−1 − J
h,cand
i )/c1) > û,

(θ̂i−1, J
h
i−1) otherwise,

where c1 is the temperature and û is a draw from a uniform distribution.

(d) Find the parameter draw θ̂hmin that corresponds to min{Jhi }
Nd
i=1, and update Σh

P .

i. Discard the first Nd/2 draws. Stack the remaining draws in a Nd/2 × Np matrix,
Θ̂h, and define Θ̃h = Θ̂h − 1Nd/2×1

∑Nd

i=Nd/2
θ̂hi /(Nd/2).

ii. Calculate Σh,up
P = (Θ̃h)′Θ̃h/(Nd/2).

(e) Repeat the previous step NSMM times, initializing at draw θ̂0 = θ̂hmin and covariance
matrix ΣP = Σh,up

P . Gradually decrease the temperature. Of all the draws, find the
lowest J value, denoted Jhguess, and the corresponding draws, θhguess.

(f) Minimize the same loss function with MATLAB’s fminsearch starting at θhguess.
The resulting minimum is θ̂hmin with a loss function value of Jhmin. Repeat, each time
updating the guess, until Jhguess − Jhmin < 0.001. The parameter estimates reported in
Table 3 of the main paper, denoted θ̂h, correspond to the final Jhmin.

The set of SMM parameter estimates {θ̂h}Nh
h=1 approximate the joint sampling distribution

of the parameters. We report its mean, θ̄ =
∑Nh

h=1 θ̂
h/Nh, and (5, 95) percentiles. For the
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targeted and non-targeted moments, we report the mean, Ψ̄M
T =

∑Nh

h=1 Ψ̄M
R,T (θ̂h, Eh)/Nh,

and the corresponding t-statistic for moment m, (Ψ̄M
T (m)− Ψ̂D

T (m))/(Σ̂D
T (m,m))1/2.

We set Nh = 100, R = 1,001, and NSMM = 5. Nm, Nd, Np, and c1 are all model-specific. The
SMM algorithm is programmed in Fortran 95 with Open MPI and executed on the BigTex cluster.

C SOLUTION METHODS

Nonlinear Solution The nonlinear equilibrium system can be compactly written as

Et[g(xt+1,xt, εt+1)|zt, ϑ] = 0,

where g is a vector-valued function, xt is a vector of variables, εt = {st, at} is a vector of shocks,
zt is a vector of endogenous and exogenous state variables, and ϑ is a vector of model parameters.

To approximate st and at we use the Markov chain in Rouwenhorst (1995), which Kopecky
and Suen (2010) show outperforms other methods for approximating highly-persistent processes.
We generalize this method to allow for cross correlation between st and at following Galindev and
Lkhagvasuren (2010). Specifically, we define ln st ≡ ln r1,t and ln at ≡ ln r2,t +ρ3 ln r3,t such that

ln r1,t = (1− ρs) ln s̄+ ρs ln r1,t−1 + σ1ε1,t,

ln r2,t = (1− ρa) ln ā+ ρa ln r2,t−1 + σ2ε2,t,

ln r3,t = ρa ln r3,t−1 + σ1ε1,t.

The new system satisfies the following moment restrictions:

V ar(ln st) =
(ρasσa)

2 + σ2
s

1− ρ2
s

= V ar(ln r1,t) =
σ2

1

1− ρ2
s

,

Cov(ln st, ln at) =
ρas(σ

2
s + σ2

a)

1− ρsρa
= Cov(ln r1,t, ln r2,t + ρ3r3,t) =

ρ3σ
2
1

1− ρsρa
,

V ar(ln at) =
(ρasσs)

2 + σ2
a

1− ρ2
a

= V ar(ln r2,t + ρ3 ln r3,t) =
σ2

2

1− ρ2
a

+
(ρ3σ1)2

1− ρ2
a

,

which allows us to solve for the parameters of the new processes,

σ1 =
√

(ρasσa)2 + σ2
s , ρ3 = ρas(σ

2
s + σ2

a)/σ
2
1, σ2 =

√
(ρasσs)2 + σ2

a − (ρ3σ1)2.

The transformed variables ln r1,t and ln r2,t are approximated with independent Markov chains,
while ln r3,t is centered at zero on the interval [−3, 3]SD(ln r3), where SD(ln r3) = σ1/

√
1− ρ2

a.
The bounds on the endogenous states, nt−1 and kt−1, are set to [−12%,+3%] and [−8%,+5%] of
their deterministic steady-state values, n̄ and k̄, which contain at least 99% of the ergodic distribu-
tion. We discretize r1,t, r2,t, nt−1, kt−1, and r3,t into 11, 11, 15, 15, and 15 evenly-spaced points,
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respectively. The product of the points in each dimension, D, is the total nodes in the state space
(D = 408,375). The realization of zt on node d is denoted zt(d). The Rouwenhorst method pro-
vides integration nodes, [r1,t+1(m), r2,t+1(m)], with weights, φ(m), for m ∈ {1, . . . ,M}. Since
they evolve according to Markov chains, the number of realizations of rj,t+1 is the same as rj,t (11).

Since vacancies vt ≥ 0, we introduce an auxiliary variable, ζt, such that vt = max{0, ζt}2 and
λ0,t = max{0,−ζt}2, where λ0,t is the Lagrange multiplier on the non-negativity constraint. If
ζt ≥ 0, then vt = ζ2

t and λ0,t = 0. When ζt < 0, the constraint is binding, vt = 0, and λ0,t = ζ2
t .

Therefore, the constraint on vt is transformed into a pair of equalities (Garcia and Zangwill, 1981).
The vector of policy functions and the realization on node d are denoted pf t and pf t(d), where

pf t ≡ [ζt(zt), ct(zt)]. The following steps outline our nonlinear policy function iteration algorithm:

1. Use Sims’s (2002) gensys algorithm to solve the log-linear model. Then map the solution
for the policy functions to the discretized state space. This provides an initial conjecture.

2. On iteration j ∈ {1, 2, . . .} and each node d ∈ {1, . . . , D}, use Chris Sims’s csolve to find
pf t(d) to satisfy E[g(·)|zt(d), ϑ] ≈ 0. Guess pf t(d) = pf j−1(d). Then apply the following:

(a) Solve for all variables dated at time t, given pf t(d) and zt(d).

(b) Linearly interpolate the policy functions, pf j−1, at the updated state variables, zt+1(m),
to obtain pf t+1(m) on every integration node, m ∈ {1, . . . ,M}.

(c) Given {pf t+1(m)}Mm=1, solve for the other elements of xt+1(m) and compute

E[g(xt+1,xt(d), εt+1)|zt(d), ϑ] ≈
∑M

m=1 φ(m)g(xt+1(m),xt(d), εt+1(m)).

When csolve converges, set pf j(d) = pf t(d).

3. Repeat step 2 until maxdistj < 10−8, where maxdistj ≡ max{|pf j − pf j−1|}. When that
criterion is satisfied, the algorithm has converged to an approximate nonlinear solution.

Linear Solution We solve the following equilibrium system by applying Sims (2002) method:

n̂t = (1− s̄)n̂t−1 + s̄(q̂t + v̂t − ŝt)

θ̂t = v̂t − ûst
ūsûst = ūût−1 + χs̄n̄(ŝt + n̂t−1)

ūût + n̄n̂t = 0

ŷt = αk̂t−1 + (1− α)(ât + n̂t)

c̄ĉt + ı̄̂ıt + κv̄v̂t = ȳŷt

q̂t = −θ̄ιθ̂t/(1 + θ̄ι)

f̂t = θ̂t + q̂t
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w̄ŵt = ηw̄f ŵf,t + βηκ(1− χs̄)θ̄(Etx̂t+1 + Etθ̂t+1 − χs̄
1−χs̄Etŝt+1)

−(κ/q̄)q̂t = w̄f ŵf,t − w̄ŵt + β(1− s̄)(κ/q̄)(Etx̂t+1 − Etq̂t+1 − s̄
1−s̄Etŝt+1)

x̂t+1 = ĉt − ĉt+1

(1/ν)(̂ıt − k̂t−1) = Etx̂t+1 + βr̄kEtr̂
k
t+1 + (β/ν)(Etı̂t+1 − k̂t)

k̂t = (1− δ)k̂t−1 + δı̂t

r̂kt = ŷt − k̂t−1

ŵf,t = ŷt − n̂t
z̄ẑt = z̄ŝt − χs̄f̄ f̂t
θ̂d = v̂t − ût−1

ât = ρaât−1 + ρasσsεs,t+1 + σaεa,t+1

ŝt = ρsŝt−1 + ρasσaεa,t+1 + σsεs,t+1

where hats denote log deviations from the deterministic steady state (x̂t = log xt − log x̄).

D GENERALIZED IMPULSE RESPONSES AND VARIANCE DECOMPOSITION

A linear impulse response function (IRF) can be generalized to a nonlinear model. The key dif-
ferences from a linear IRF are that a generalized IRF (GIRF) might vary with the initial states
(e.g., whether unemployment is low or high) or be a nonlinear function of the size of the shock of
interest. Following Koop et al. (1996), the GIRF of variable xt+h over horizon h is given by

Gjt (xt+h|εj,t+1 = ξj, zt) = Et[xt+h|εj,t+1 = ξj, zt]− Et[xt+h|zt],

where ξj is the size of shock j ∈ {s, a} and zt is a vector of initial states. The conditional
expectations are computed based on the mean path from 10,000 simulations of the nonlinear model.

Likewise, a linear forecast error variance decomposition (FEVD) can be generalized to a non-
linear model by replacing the linear IRF with the GIRF. Thus, the generalized FEVD (GFEVD)
inherits the possible state dependency and nonlinearity of the GIRF. Following Lanne and Nyberg
(2016), the GFEVD of variable xt+h into component j over time horizon h is given by

λjt(xt+h|zt) =

∫ ∞
−∞

∑h
`=1 (G(xt+`|εj,t+1 = ξj, zt))

2∑m
j=1

∑h
`=1 (G(xt+`|εj,t+1 = ξj, zt))

2
f(ξj)dξj,

where f(·) is the probability density function of εj . In nonlinear models, the magnitude of the
response of an endogenous variable to an exogenous innovation is not necessarily a linear function
of the shock size. Thus, we report the nonlinear model GFEVD after integrating across the shock
using Gauss Hermite quadrature. We normalize the GFEVD the same way as the linear FEVD.
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