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A DETRENDEDEQUILIBRIUM SYSTEM

Medium-Scale Model The detrended system includes (1), (6), (7), (9), (16), (17)and

ỹt = (υtk̃t−1/zt)
αn1−α

t , (1)

rkt = αmctztỹt/(υtk̃t−1), (2)

w̃t = (1− α)mctỹt/nt, (3)

wg
t = πtztw̃t/(π̄z̄w̃t−1), (4)

ỹgdpt = [1− ϕp(πt/π̄ − 1)2/2− ϕw(w
g
t − 1)2/2]ỹt − utk̃t−1/zt, (5)

ygt = ztỹ
gdp
t /(z̄ỹgdpt−1), (6)

λ̃t = c̃t − hc̃t−1/zt, (7)

w̃f
t = χnη

t λ̃t, (8)

c̃t + x̃t = ỹt, (9)

xgt = ztx̃t/(z̄x̃t−1), (10)

k̃t = (1− δ)(k̃t−1/zt) + x̃t(1− ν(xgt − 1)2/2), (11)

1 = βEt[(λ̃t/λ̃t+1)(stit/(zt+1πt+1))], (12)

qt = βEt[(λ̃t/λ̃t+1)(r
k
t+1υt+1 − ut+1 + (1− δ)qt+1)/zt+1], (13)

1 = qt[1− ν(xgt − 1)2/2− ν(xgt − 1)xgt ] + βνz̄Et[qt+1(λ̃t/λ̃t+1)(x
g
t+1)

2(xgt+1 − 1)/zt+1], (14)

ϕp(πt/π̄ − 1)(πt/π̄) = 1− θp + θpmct + βϕpEt[(λ̃t/λ̃t+1)(πt+1/π̄ − 1)(πt+1/π̄)(ỹt+1/ỹt)], (15)

ϕw(w
g
t − 1)wg

t = [(1− θw)w̃t + θww̃
f
t ]nt/ỹt + βϕwEt[(λ̃t/λ̃t+1)(w

g
t+1 − 1)wg

t+1(ỹt+1/ỹt)]. (16)

The variables arẽc, n, x̃, k̃, ỹ, ỹgdp, u, υ, wg, xg, yg, w̃f , w̃, rk, π, i, in, q,mc, λ̃, z, ands.

Small-Scale Model The detrended system includes (1), (7), (16), (17), (30), (31), (36), (39), and

ỹt = nt, (17)

w̃t = mctỹt/nt, (18)

ỹgdpt = [1− ϕp(πt/π̄ − 1)2/2]ỹt, (19)

w̃t = χnη
t λ̃t, (20)

c̃t = ỹgdpt . (21)

The variables arẽc, n, ỹ, ỹgdp, yg, w̃, π, i, in, mc, λ̃, z, ands.

B NONLINEAR SOLUTION METHOD

We begin by compactly writing the detrended nonlinear equilibrium system as

E[f(st+1, st, εt+1)|zt, ϑ] = 0,
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wheref is a vector-valued function,st is a vector of variables,εt ≡ [εs,t, εz,t, εi,t]
′ is a vector of

shocks,zt is a vector of states (zt ≡ [c̃t−1, i
n
t−1, k̃t−1, x̃t−1, w̃t−1, st, zt, εi,t]

′ for the model with cap-

ital andzt ≡ [c̃t−1, i
n
t−1, st, zt, εi,t]

′ for the model without capital), andϑ is a vector of parameters.

There are many ways to discretize the exogenous state variables,st, zt, andεi,t. We use the

Markov chain in Rouwenhorst (1995), which Kopecky and Suen (2010) show outperforms other

methods for approximating autoregressive processes. The bounds oñct−1, int−1, k̃t−1, x̃t−1, and

w̃t−1 are respectively set to±2.5%, ±6%, ±8%, ±15%, ±4% of their deterministic steady state.

These bounds were chosen so the grids contain99.9% of the simulated values for each state vari-

able and ZLB duration. We discretize the states into7 evenly-spaced points, except for capital

and the risk premium which use11 and13 points, respectively. The product of the points in each

dimension,D, represents the total nodes in the state space (D = 16,823,807 for the model with

capital andD = 31,213 for the model without capital). The realization ofzt on noded is denoted

zt(d). The Rouwenhorst method provides integration nodes,[st+1(m), zt+1(m), εi,t+1(m)], with

weights,φ(m), for m ∈ {1, . . . ,M}. Since the exogenous variables evolve according to a Markov

chain, the number of future realizations is the same as the state variables,(13, 7, 7) orM = 637.

The vector of policy functions is denotedpf t and the realization on noded is denotedpf t(d)

(pf t ≡ [c̃t(zt), π
gap
t (zt), nt(zt), qt(zt), υt(zt)] for the capital model andpf t ≡ [c̃t(zt), π

gap
t (zt)] for

the model without capital, whereπgap
t (zt) ≡ πt(zt)/π̄). Our choice of policy functions, while not

unique, simplifies solving for the other variables in the nonlinear system of equations givenzt.

The following steps outline our global policy function iteration algorithm:

1. Use Sims’s (2002)gensys algorithm to solve the level-linear model without the ZLB con-

straint. Then map the solution to the discretized state space to initialize the policy functions.

2. On iterationj ∈ {1, 2, . . .} and each noded ∈ {1, . . . , D}, use Chris Sims’scsolve to find

pf t(d) to satisfyE[f(·)|zt(d), ϑ] ≈ 0. Guesspf t(d) = pf j−1(d). Then apply the following:

(a) Solve for all variables dated at timet, givenpf t(d) andzt(d).

(b) Linearly interpolate the policy functions,pf j−1, at the updated state variables,zt+1(m),

to obtainpf t+1(m) on every integration node,m ∈ {1, . . . ,M}.

(c) Given{pf t+1(m)}Mm=1, solve for the other elements ofst+1(m) and compute

E[f(st+1, st(d), εt+1)|zt(d), ϑ] ≈
∑M

m=1 φ(m)f(st+1(m), st(d), εt+1(m)).

Whencsolve converges, setpf j(d) = pf t(d).

3. Repeat step 2 untilmaxdistj < 10−6, wheremaxdistj ≡ max{|pf j − pf j−1|}. When that

criterion is satisfied, the algorithm has converged to an approximate nonlinear solution.
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C ESTIMATION ALGORITHM

We use a random walk Metropolis-Hastings algorithm to estimate the model in section 3 with

artificial data of120 quarters. To measure how well the model fits the data, we use either the

adapted particle filter described in Algorithm 14 in Herbst and Schorfheide (2016), which modifies

the basic bootstrap filter in Stewart and McCarty (1992) and Gordon et al. (1993) to better account

for the outliers in the data, or the inversion filter recentlyused by Guerrieri and Iacoviello (2017).

C.1 METROPOLIS-HASTINGS ALGORITHM The following steps outline the algorithm:

1. Generate artificial data consisting of the output growth gap, the inflation rate, and the nomi-

nal interest rate,xt ≡ [ygt , πt, it]
′, whereNx = 3 is the number of observable variables.

2. Specify the prior distributions, means, variances, and bounds of each element of the vector

of Ne estimated parameters,θ ≡ [ϕp, φπ, φy, h, ρs, ρi, σz, σs, σi]
′.

3. Find the posterior mode to initialize the preliminary Metropolis-Hastings step.

(a) For alli ∈ {1, . . . , Nm}, whereNm = 5,000, apply the following steps:

i. Draw θ̂i from the joint prior distribution and calculate its densityvalue:

log ℓpriori =
∑Ne

j=1 log p(θ̂i,j|µj, σ
2
j ),

wherep is the prior density function of parameterj with meanµj and varianceσ2
j .

ii. Solve the model given̂θi. Follow Appendix B for the nonlinear model and use

OccBin for the PW linear model. Repeat 3(a)i if the algorithmdoes not converge.

iii. Obtain the model log-likelihood,log ℓmodel
i . Apply the particle filter described in

Appendix C.2 to the nonlinear model and the inversion filter to the PW linear

model.

iv. The posterior log-likelihood islog ℓposti = log ℓpriori + log ℓmodel
i

(b) Calculatemax(log ℓpost1 , . . . , log ℓpostNm
) and find the corresponding parameter vector,θ̂0.

4. Approximate the covariance matrix for the joint posterior distribution of the parameters,Σ,

which is used to obtain candidate draws during the preliminary Metropolis-Hastings step.

(a) Locate the draws with a likelihood in the top decile. Stack theNm,sub = (1 − p)Nm

draws in aNm,sub ×Ne matrix,Θ̂, and definẽΘ = Θ̂−
∑Nm,sub

i=1 θ̂i,j/Nm,sub.

(b) CalculateΣ = Θ̃′Θ̃/Nm,sub and verify it is positive definite, otherwise repeat step 3.

5. Perform an initial run of the random walk Metropolis-Hastings algorithm.
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(a) For alli ∈ {0, . . . , Nd}, whereNd = 25,000, perform the following steps:

i. Draw a candidate vector of parameters,θ̂candi , where

θ̂i
cand ∼







N(θ̂0, c0Σ) for i = 0,

N(θ̂i−1, cΣ) for i > 0.

We setc0 = 0 and tunec to target an overall acceptance rate of roughly30%.

ii. Calculate the prior density value,log ℓpriori , of the candidate draw,̂θcandi , as in 3(a)i.

iii. Solve the model given̂θcandi . If the algorithm does not converge repeat 5(a)i.

iv. Obtain the model log-likelihood value,log ℓmodel
i , using the methods in 3(a)iii.

v. Accept or reject the candidate draw according to

(θ̂i, log ℓi) =



















(θ̂candi , log ℓcandi ) if i = 0,

(θ̂candi , log ℓcandi ) if min(1, ℓcandi /ℓi−1) > û,

(θ̂i−1, log ℓi−1) otherwise,

where û is a draw from a uniform distribution,U[0, 1], and the posterior log-

likelihood associated with the candidate draw islog ℓcandi = log ℓpriori + log ℓmodel
i .

(b) Burn the firstNb = 5,000 draws and use the remaining sample to calculate the mean

draw,θ̂5(b) =
∑Nd

i=Nb+1 θ̂i/(Nd −Nb), and the covariance matrix,Σ5(b). We follow step

4 to calculateΣ5(b) but use allNd −Nb draws instead of just the upperpth percentile.

6. Conduct a final run of the Metropolis-Hastings algorithm by repeating step 5, whereNd =

50,000, θ̂0 = θ̂5(b), andΣ = Σ5(b). The final posterior mean estimates areθ̂ =
∑Nd

i=1 θ̂i/Nd.

C.2 ADAPTED PARTICLE FILTER Henceforth, our definition ofst from Appendix B is referred

to as the state vector, which should not be confused with the state variables for the nonlinear model.

1. Initialize the filter by drawing{εt,p}0t=−24 for all p ∈ {0, . . . , Np} and simulating the model,

whereNp is the number of particles. We initialize the filter with the final state vector,s0,p,

which is approximately a draw from the model’s ergodic distribution. We setNp = 40,000.

2. Fort ∈ {1, . . . , T}, sequentially filter the nonlinear model as follows:

(a) Forp ∈ {1, . . . , Np}, draw shocks from an adapted distribution,εt,p ∼ N(ε̄t, I), where

ε̄t maximizesp(ξt|st)p(st|s̄t−1) ands̄t−1 =
∑Np

p=1 st−1,p/Np is the mean state vector.

i. Use the model solution to update the state vector,st, givens̄t−1 and a guess for̄εt.

Definesht ≡ Hst, whereH selects the observable variables from the state vector.
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ii. Calculate the measurement error,ξt = sht −xt, which is assumed to be multivariate

normally distributed,p(ξt|st) = (2π)−3/2|R|−1/2 exp(−ξ′tR
−1ξt/2), whereR ≡

diag(σ2
me,yg , σ

2
me,π, σ

2
me,i) is a diagonal matrix of measurement error variances.

iii. The probability of observing the current state,st, conditional on̄st−1, is given by

p(st|s̄t−1) = (2π)−3/2 exp(−ε̄′tε̄t/2).

iv. Maximizep(ξt|st)p(st|s̄t−1) ∝ exp(−ξ′tR
−1ξt/2) exp(−ε̄′tε̄t/2) by solving for the

optimalε̄t. We use MATLAB’sfminsearch routine converted to Fortran.

(b) Use the model solution to predict the state vector,st,p, givenst−1,p andεt,p.

(c) Calculateξt,p = sht,p − xt. The unnormalized weight on particlep is given by

ωt,p =
p(ξt|st,p)p(st,p|st−1,p)

g(st,p|st−1,p,xt)
∝

exp(−ξ′t,pR
−1ξt,p/2) exp(−ε′t,pεt,p/2)

exp(−(εt,p − ε̄t)′(εt,p − ε̄t)/2)
.

Without adaptation,̄εt = 0 andωt,p = p(ξt|st,p), as in a basic bootstrap particle filter.

The time-t contribution to the model log-likelihood isℓmodel
t =

∑Np

p=1 ωt,p/Np.

(d) Normalize the weights,Wt,p = ωt,p/
∑Np

p=1 ωt,p. Then use systematic resampling with

replacement from the swarm of particles as described in Kitagawa (1996) to get a set

of particles that represents the filter distribution and reshuffle{st,p}
Np

p=1 accordingly.

3. The model log-likelihood islog ℓmodel =
∑T

t=1 log ℓ
model
t .

Aruoba et al. (2018) apply the same methodology to a New Keynesian model with sunspot shocks.

See Herbst and Schorfheide (2016) for a comprehensive discussion of the different particle filters.

D CONTINUOUS RANK PROBABILITY SCORE (CRPS) EXAMPLE

Figure 1shows an example of the 8-quarter ahead forecast distribution of the nominal interest rate

given the parameter estimates from NL-PF-5%. We picked a dataset where the ZLB binds for six

quarters, from period90 to 95 in the sample. The forecasts are initialized at the filtered state in

period89, immediately before the ZLB first binds, and the forecast distribution is approximated

based on10,000 simulations. Due to a strong tendency for the forecasts to revert to the stochastic

steady state, the mean forecast for the nominal interest rate is 2.32%. However, the probability

density function (PDF) in the left panel shows a significant number of forecasts remain near or at

the ZLB, even after 8 quarters. The true realization equals1.94%, which means there is signifi-

cant probability mass under the PDF above and below the true value. The right panel shows the

cumulative distribution function (CDF) of the forecasts. TheCRPS for this dataset and estimation

method is closely related to the shaded area, which has the same units as the forecasted variable.
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Figure 1: Example forecast distribution in the period before the ZLB binds in the data.

E ADDITIONAL RESULTS

First, we examine the sources of the bias in the estimates of the habit persistence and price adjust-

ment cost parameters. Second, we report the parameter estimates for datasets with ZLB events be-

tween 0 and 30 quarters long. Third, we show how misspecification affects the parameter estimates

and impulse responses using generated data from our small-scale model. Fourth, we plot impulse

responses to a productivity growth and monetary policy shock when the ZLB binds. Fifth, we

compare the filtered paths of the notional interest rate. Sixth, we provide additional statistics about

the ZLB events in our datasets. Finally, we examine how government spending affects our results.

E.1 PRICE ADJUSTMENT COST AND HABIT PERSISTENCE In table 4, estimates of the price

adjustment cost (ϕp) and habit persistence (h) parameters have some of the largestNRMSEs, even

in datasets without a ZLB event. These parameters are critical for output and inflation dynamics, so

understanding the source of the bias is important for interpreting our results. The small-scale model

lacks important shock amplifiers for output, such as sticky wages and variable capital utilization.

Therefore, the response of output growth is too small when the model is parameterized with the true

values. Conversely, the lack of sticky wages means marginalcosts are overly volatile and inflation

is too sensitive to shocks. If misspecification impacted theresponses of output growth and inflation

in the same direction, the estimated shock size would have been affected. Instead, estimates ofh

are lower than the true value, amplifying the response of output. Estimates ofϕp are biased upward,

flattening the price Phillips curve and stabilizing inflation despite overly volatile marginal costs.

Another potentially important source of the bias is the misspecification in the aggregate re-

source constraint. Movements in wage adjustment costs, capital utilization costs and other terms

could be interpreted as price adjustment costs through a larger estimate ofϕp. However, that is
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unlikely to drive the bias in estimates ofϕp andh. The NL-PF-5% and Lin-KF-5% estimates of

ϕp andh are very similar, despite the absence of price adjustment costs in the aggregate resource

constraint in the linear model (i.e.,̂yt = ŷgdpt = ĉt). Therefore, the upward bias inϕp is not the

result of price adjustment costs absorbing the gap between consumption and output in the DGP.

The middle columns of table 5, where only sticky wages are added to the small-scale model,

support these conclusions. In particular, in datasets without a ZLB event, there is virtually no bias

in the OB-IF-0% estimates ofϕp andh, but there is a large upward bias inσs. When sticky wages

are added, the volatility of output growth is still too smalldue to the absence of investment and

capital utilization, but the volatility of inflation is now proportionally too small as well.σs increases

to match the dynamics of the output and inflation data, whileh andϕp remain close to their true

values. In the right two columns of table 5, the full model is estimated andσs is close to the truth.

Ptr Truth NL-PF-5% OB-IF-0% Lin-KF-5%

0Q 30Q 0Q 30Q 0Q 30Q

ρs 0.8 0.43 0.52 0.39 0.44 0.43 0.55
(0.37, 0.50) (0.40, 0.68) (0.31, 0.47) (0.26, 0.71) (0.35, 0.50) (0.40, 0.77)
{0.47, 0.00} {0.37, 0.04} {0.52, 0.00} {0.48, 0.04} {0.47, 0.00} {0.33, 0.12}

ρi 0.8 0.74 0.75 0.69 0.68 0.74 0.79
(0.69, 0.78) (0.71, 0.81) (0.65, 0.73) (0.62, 0.73) (0.70, 0.78) (0.73, 0.84)
{0.09, 0.26} {0.07, 0.52} {0.15, 0.00} {0.16, 0.00} {0.09, 0.30} {0.05, 0.86}

σz 0.005 0.0052 0.0062 0.0086 0.0107 0.0053 0.0078
(0.0041, 0.0067) (0.0037, 0.0134) (0.0069, 0.0099) (0.0071, 0.0163) (0.0041, 0.0067) (0.0042, 0.0138)
{0.17, 0.88} {0.54, 0.82} {0.73, 0.00} {1.28, 0.00} {0.17, 0.86} {0.83, 0.44}

σs 0.005 0.0166 0.0196 0.0183 0.0239 0.0169 0.0169
(0.0139, 0.0212) (0.0113, 0.0261) (0.0143, 0.0230) (0.0085, 0.0355) (0.0141, 0.0216) (0.0065, 0.0257)
{2.37, 0.00} {3.04, 0.12} {2.71, 0.00} {4.15, 0.04} {2.42, 0.00} {2.59, 0.12}

σi 0.002 0.0018 0.0016 0.0021 0.0021 0.0018 0.0017
(0.0015, 0.0022) (0.0014, 0.0021) (0.0019, 0.0023) (0.0019, 0.0025) (0.0015, 0.0022) (0.0015, 0.0020)
{0.13, 0.64} {0.21, 0.38} {0.09, 0.78} {0.11, 0.78} {0.13, 0.64} {0.16, 0.44}

φπ 2.0 2.04 2.03 1.96 1.84 2.01 1.64
(1.81, 2.23) (1.84, 2.33) (1.70, 2.21) (1.53, 2.24) (1.78, 2.22) (1.41, 1.89)
{0.07, 0.96} {0.07, 0.90} {0.08, 0.96} {0.14, 0.80} {0.07, 0.98} {0.19, 0.44}

φy 0.5 0.23 0.29 0.13 0.20 0.24 0.19
(0.11, 0.40) (0.14, 0.50) (0.05, 0.22) (0.05, 0.35) (0.11, 0.41) (0.08, 0.36)
{0.56, 0.32} {0.49, 0.54} {0.75, 0.02} {0.65, 0.10} {0.56, 0.30} {0.64, 0.18}

Σ 3.86 4.80 5.02 6.96 3.91 4.81

Table 1: Average,(5, 95) percentiles, and{NRMSE,CR}. Σ is the sum of theNRMSE across the parameters.

Lastly, we fixedϕp andh to their true values and re-estimated each specification.Table 1

reports the results, which show how other parameters adjust. In particular,σs is now3 to 4 times

higher than its true value andρs drops to roughly half of its true value. TheNRMSEs for σs are

by far the largest of any parameter and theCRs are all near0. In this exercise,h cannot fall to

compensate for the missing frictions, so the size of the riskpremium shocks must increase. This

effect, in addition to not allowingϕp to increase to compensate for the lack of sticky wages, induces

too much inflation volatility. Therefore, the estimate of risk premium persistence,ρs, falls. Unlike

its shock size, its persistence affects the inflation response more than the output growth response.
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Ptr Truth 0Q 6Q 12Q 18Q 24Q 30Q

NL-PF-5%

ϕp 100 151.1 161.0 172.1 180.6 187.2 188.4
(134.2, 165.8) (143.2, 179.3) (153.8, 193.4) (161.3, 201.4) (167.0, 204.5) (174.7, 202.7)
{0.52, 0.02} {0.62, 0.00} {0.73, 0.00} {0.81, 0.18} {0.88, 0.00} {0.89, 0.00}

h 0.8 0.66 0.66 0.67 0.67 0.68 0.68
(0.62, 0.70) (0.61, 0.71) (0.62, 0.71) (0.63, 0.71) (0.64, 0.72) (0.64, 0.71)
{0.18, 0.00} {0.17, 0.00} {0.17, 0.00} {0.16, 0.00} {0.15, 0.00} {0.16, 0.00}

ρs 0.8 0.76 0.77 0.79 0.80 0.81 0.81
(0.72, 0.80) (0.74, 0.81) (0.75, 0.82) (0.77, 0.84) (0.78, 0.83) (0.78, 0.84)
{0.06, 0.70} {0.04, 0.86} {0.03, 0.98} {0.03, 0.92} {0.02, 0.96} {0.03, 0.90}

ρi 0.8 0.79 0.79 0.79 0.80 0.80 0.80
(0.75, 0.82) (0.75, 0.82) (0.77, 0.82) (0.76, 0.83) (0.76, 0.84) (0.75, 0.84)
{0.03, 0.96} {0.04, 0.90} {0.02, 1.00} {0.03, 0.94} {0.03, 0.94} {0.03, 0.96}

σz 0.0050 0.0032 0.0032 0.0034 0.0037 0.0038 0.0040
(0.0023, 0.0039) (0.0023, 0.0041) (0.0024, 0.0044) (0.0027, 0.0049) (0.0027, 0.0047) (0.0030, 0.0052)
{0.37, 0.00} {0.38, 0.08} {0.34, 0.18} {0.29, 0.38} {0.28, 0.46} {0.23, 0.58}

σs 0.0050 0.0052 0.0052 0.0051 0.0051 0.0050 0.0050
(0.0040, 0.0066) (0.0042, 0.0068) (0.0040, 0.0060) (0.0034, 0.0064) (0.0041, 0.0064) (0.0039, 0.0062)
{0.15, 0.92} {0.15, 0.92} {0.13, 0.98} {0.18, 0.86} {0.12, 1.00} {0.13, 0.96}

σi 0.0020 0.0017 0.0017 0.0016 0.0016 0.0015 0.0015
(0.0014, 0.0020) (0.0014, 0.0019) (0.0014, 0.0019) (0.0013, 0.0019) (0.0013, 0.0018) (0.0013, 0.0019)
{0.17, 0.48} {0.18, 0.40} {0.21, 0.30} {0.24, 0.26} {0.25, 0.20} {0.24, 0.20}

φπ 2.0 2.04 2.06 2.12 2.13 2.10 2.13
(1.88, 2.19) (1.87, 2.24) (1.94, 2.33) (1.90, 2.41) (1.84, 2.33) (1.94, 2.31)
{0.06, 0.98} {0.07, 0.96} {0.08, 0.92} {0.10, 0.94} {0.09, 0.90} {0.09, 0.92}

φy 0.5 0.35 0.39 0.41 0.40 0.41 0.42
(0.21, 0.54) (0.22, 0.61) (0.27, 0.60) (0.26, 0.54) (0.26, 0.61) (0.27, 0.62)
{0.36, 0.80} {0.31, 0.92} {0.27, 1.00} {0.27, 0.92} {0.27, 0.98} {0.28, 0.98}

Σ 1.90 1.96 1.99 2.12 2.09 2.08

OB-IF-0%

ϕp 100 142.6 152.5 164.5 174.7 183.1 183.4
(121.1, 157.3) (131.3, 170.7) (140.8, 185.5) (153.9, 202.0) (165.3, 204.1) (169.2, 198.5)
{0.44, 0.08} {0.54, 0.02} {0.66, 0.00} {0.76, 0.00} {0.84, 0.00} {0.84, 0.00}

h 0.8 0.64 0.64 0.63 0.63 0.63 0.63
(0.61, 0.67) (0.61, 0.68) (0.60, 0.67) (0.61, 0.67) (0.59, 0.67) (0.60, 0.67)
{0.20, 0.00} {0.20, 0.00} {0.21, 0.00} {0.21, 0.00} {0.21, 0.00} {0.21, 0.00}

ρs 0.8 0.76 0.77 0.80 0.81 0.82 0.82
(0.73, 0.81) (0.73, 0.81) (0.76, 0.83) (0.78, 0.85) (0.80, 0.85) (0.79, 0.86)
{0.05, 0.82} {0.04, 0.92} {0.03, 0.96} {0.03, 0.86} {0.03, 0.76} {0.04, 0.78}

ρi 0.8 0.76 0.75 0.76 0.76 0.76 0.77
(0.71, 0.79) (0.71, 0.80) (0.73, 0.79) (0.68, 0.80) (0.72, 0.81) (0.73, 0.81)
{0.06, 0.52} {0.07, 0.50} {0.06, 0.54} {0.06, 0.58} {0.06, 0.58} {0.05, 0.66}

σz 0.0050 0.0051 0.0053 0.0056 0.0059 0.0060 0.0059
(0.0044, 0.0058) (0.0048, 0.0068) (0.0047, 0.0066) (0.0051, 0.0079) (0.0051, 0.0074) (0.0050, 0.0069)
{0.09, 0.92} {0.13, 0.82} {0.19, 0.60} {0.24, 0.54} {0.25, 0.46} {0.22, 0.30}

σs 0.0050 0.0051 0.0051 0.0048 0.0047 0.0045 0.0046
(0.0042, 0.0063) (0.0041, 0.0063) (0.0039, 0.0058) (0.0031, 0.0058) (0.0037, 0.0053) (0.0036, 0.0056)
{0.13, 0.92} {0.14, 0.96} {0.13, 0.90} {0.18, 0.76} {0.15, 0.80} {0.15, 0.82}

σi 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020
(0.0018, 0.0023) (0.0018, 0.0023) (0.0018, 0.0022) (0.0018, 0.0024) (0.0018, 0.0023) (0.0019, 0.0024)
{0.08, 0.90} {0.07, 0.90} {0.07, 0.98} {0.09, 0.82} {0.08, 0.88} {0.09, 0.90}

φπ 2.0 2.01 1.96 1.99 1.97 1.94 1.96
(1.84, 2.16) (1.77, 2.16) (1.78, 2.16) (1.73, 2.23) (1.69, 2.19) (1.77, 2.14)
{0.06, 0.98} {0.07, 0.98} {0.06, 0.98} {0.08, 0.96} {0.08, 0.90} {0.06, 0.98}

φy 0.5 0.32 0.35 0.39 0.36 0.41 0.44
(0.17, 0.48) (0.18, 0.53) (0.24, 0.56) (0.20, 0.52) (0.21, 0.62) (0.27, 0.61)
{0.41, 0.68} {0.37, 0.76} {0.30, 0.90} {0.35, 0.80} {0.29, 0.90} {0.25, 0.98}

Σ 1.53 1.63 1.71 2.01 1.99 1.91

Table 2: Average,(5, 95) percentiles, and{NRMSE,CR}. Σ is the sum of theNRMSE across the parameters.

8



ATKINSON, RICHTER & T HROCKMORTON: THE ZERO LOWER BOUND AND ESTIMATION ACCURACY

Ptr Truth 0Q 6Q 12Q 18Q 24Q 30Q

Lin-KF-0%

ϕp 100 143.0 153.3 167.2 177.5 186.3 186.9
(125.9, 157.7) (134.2, 168.4) (147.0, 196.6) (157.1, 204.9) (165.6, 204.5) (168.5, 201.1)
{0.44, 0.04} {0.54, 0.00} {0.69, 0.00} {0.79, 0.00} {0.87, 0.00} {0.88, 0.00}

h 0.8 0.64 0.64 0.64 0.64 0.64 0.63
(0.61, 0.68) (0.60, 0.68) (0.60, 0.67) (0.62, 0.67) (0.60, 0.67) (0.60, 0.67)
{0.20, 0.00} {0.20, 0.00} {0.20, 0.00} {0.20, 0.00} {0.20, 0.00} {0.21, 0.00}

ρs 0.8 0.76 0.77 0.80 0.81 0.82 0.82
(0.72, 0.80) (0.74, 0.80) (0.76, 0.83) (0.76, 0.84) (0.80, 0.85) (0.80, 0.85)
{0.06, 0.74} {0.04, 0.88} {0.03, 1.00} {0.03, 0.92} {0.03, 0.82} {0.04, 0.78}

ρi 0.8 0.76 0.77 0.78 0.79 0.80 0.81
(0.73, 0.79) (0.72, 0.80) (0.75, 0.81) (0.74, 0.84) (0.77, 0.85) (0.77, 0.85)
{0.06, 0.62} {0.05, 0.70} {0.04, 0.92} {0.03, 0.88} {0.03, 0.90} {0.03, 0.90}

σz 0.0050 0.0049 0.0051 0.0055 0.0057 0.0060 0.0059
(0.0043, 0.0054) (0.0045, 0.0058) (0.0048, 0.0066) (0.0051, 0.0067) (0.0049, 0.0071) (0.0051, 0.0068)
{0.07, 0.90} {0.08, 0.88} {0.16, 0.56} {0.17, 0.50} {0.23, 0.32} {0.21, 0.28}

σs 0.0050 0.0052 0.0051 0.0048 0.0048 0.0045 0.0045
(0.0043, 0.0064) (0.0042, 0.0062) (0.0040, 0.0058) (0.0035, 0.0059) (0.0038, 0.0053) (0.0036, 0.0052)
{0.14, 0.86} {0.14, 0.96} {0.12, 0.96} {0.15, 0.86} {0.15, 0.78} {0.15, 0.86}

σi 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0019
(0.0018, 0.0022) (0.0018, 0.0022) (0.0018, 0.0023) (0.0016, 0.0022) (0.0017, 0.0022) (0.0017, 0.0022)
{0.07, 0.96} {0.07, 0.88} {0.08, 0.88} {0.08, 0.82} {0.08, 0.88} {0.08, 0.88}

φπ 2.0 2.01 1.96 1.85 1.78 1.65 1.69
(1.85, 2.15) (1.71, 2.17) (1.60, 2.07) (1.51, 2.04) (1.42, 1.92) (1.46, 1.89)
{0.06, 0.98} {0.07, 1.00} {0.10, 0.94} {0.14, 0.76} {0.19, 0.44} {0.17, 0.64}

φy 0.5 0.32 0.32 0.28 0.26 0.25 0.28
(0.18, 0.48) (0.20, 0.52) (0.11, 0.48) (0.14, 0.43) (0.15, 0.37) (0.17, 0.44)
{0.40, 0.72} {0.41, 0.60} {0.48, 0.50} {0.51, 0.32} {0.51, 0.32} {0.47, 0.44}

Σ 1.49 1.62 1.89 2.10 2.30 2.24

Lin-KF-5%

ϕp 100 151.4 161.1 174.8 183.1 191.1 191.6
(134.0, 165.7) (142.0, 179.5) (153.7, 198.6) (163.0, 208.5) (172.1, 210.9) (175.3, 204.1)
{0.52, 0.00} {0.62, 0.00} {0.76, 0.00} {0.84, 0.00} {0.92, 0.00} {0.92, 0.00}

h 0.8 0.66 0.66 0.67 0.67 0.67 0.67
(0.62, 0.69) (0.61, 0.71) (0.62, 0.71) (0.63, 0.70) (0.64, 0.71) (0.63, 0.70)
{0.18, 0.00} {0.18, 0.00} {0.17, 0.00} {0.17, 0.00} {0.16, 0.00} {0.17, 0.00}

ρs 0.8 0.76 0.78 0.80 0.81 0.82 0.82
(0.72, 0.80) (0.74, 0.81) (0.75, 0.83) (0.78, 0.85) (0.79, 0.85) (0.78, 0.86)
{0.06, 0.74} {0.04, 0.92} {0.03, 1.00} {0.03, 0.00} {0.03, 0.88} {0.04, 0.78}

ρi 0.8 0.79 0.80 0.81 0.83 0.83 0.84
(0.75, 0.82) (0.75, 0.83) (0.78, 0.84) (0.78, 0.86) (0.80, 0.88) (0.80, 0.88)
{0.03, 0.98} {0.04, 0.96} {0.03, 0.94} {0.04, 0.00} {0.05, 0.70} {0.06, 0.56}

σz 0.0050 0.0032 0.0033 0.0036 0.0040 0.0042 0.0043
(0.0023, 0.0039) (0.0025, 0.0041) (0.0027, 0.0045) (0.0029, 0.0052) (0.0029, 0.0054) (0.0030, 0.0057)
{0.36, 0.00} {0.36, 0.12} {0.31, 0.32} {0.24, 0.00} {0.22, 0.66} {0.20, 0.68}

σs 0.0050 0.0053 0.0052 0.0051 0.0050 0.0048 0.0047
(0.0040, 0.0067) (0.0042, 0.0068) (0.0041, 0.0062) (0.0033, 0.0063) (0.0039, 0.0059) (0.0037, 0.0061)
{0.15, 0.92} {0.15, 0.90} {0.14, 0.94} {0.18, 0.00} {0.12, 0.96} {0.15, 0.92}

σi 0.0020 0.0017 0.0016 0.0017 0.0016 0.0016 0.0016
(0.0015, 0.0020) (0.0014, 0.0019) (0.0014, 0.0020) (0.0012, 0.0019) (0.0014, 0.0020) (0.0014, 0.0019)
{0.16, 0.50} {0.20, 0.20} {0.17, 0.44} {0.22, 0.00} {0.19, 0.32} {0.20, 0.28}

φπ 2.0 2.04 2.00 1.89 1.83 1.72 1.73
(1.88, 2.20) (1.72, 2.21) (1.67, 2.09) (1.62, 2.09) (1.52, 1.93) (1.52, 1.91)
{0.06, 0.98} {0.07, 1.00} {0.08, 1.00} {0.11, 0.00} {0.16, 0.78} {0.15, 0.78}

φy 0.5 0.35 0.36 0.33 0.31 0.31 0.32
(0.22, 0.54) (0.21, 0.56) (0.14, 0.54) (0.18, 0.50) (0.19, 0.45) (0.17, 0.47)
{0.35, 0.80} {0.36, 0.84} {0.42, 0.70} {0.43, 0.00} {0.42, 0.66} {0.40, 0.76}

Σ 1.88 2.01 2.11 2.27 2.28 2.28

Table 3: Average,(5, 95) percentiles, and{NRMSE,CR}. Σ is the sum of theNRMSE across the parameters.
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E.2 SHORTER ZLB DURATIONS The paper focuses on the accuracy of NL-PF and OB-IF in

datasets with either no ZLB events or a single 30 quarter event. This section shows the results

when the ZLB binds for durations that are shorter than 30 quarters. We show theNRMSE for each

estimated parameter as well as the sum of theNRMSE to measure overall accuracy.Table 2shows

the results with NL-PF-5% and OB-IF-0%, while table 3focuses on Lin-KF-0% and Lin-KF-5%.

No Misspecification: DGP and Estimation Use Small-Scale Model
Ptr Truth NL-PF-5% OB-IF-0% Lin-KF-5%

0Q 30Q 0Q 30Q 0Q 30Q

ϕp 100 96.8 109.8 94.3 110.6 103.7 128.5
(81.6, 109.9) (89.5, 130.3) (81.8, 108.3) (95.3, 125.1) (92.6, 118.4) (111.2, 145.3)
{0.09, 0.96} {0.15, 0.90} {0.11, 0.96} {0.15, 0.96} {0.09, 0.98} {0.30, 0.46}

h 0.8 0.79 0.79 0.79 0.79 0.80 0.79
(0.76, 0.82) (0.77, 0.82) (0.75, 0.82) (0.77, 0.82) (0.76, 0.83) (0.76, 0.82)
{0.02, 0.94} {0.02, 0.94} {0.02, 0.92} {0.02, 0.96} {0.02, 0.96} {0.03, 0.92}

ρs 0.8 0.80 0.83 0.81 0.84 0.82 0.87
(0.76, 0.83) (0.78, 0.86) (0.76, 0.85) (0.80, 0.87) (0.77, 0.86) (0.83, 0.91)
{0.03, 0.96} {0.04, 0.60} {0.04, 0.98} {0.06, 0.58} {0.05, 0.90} {0.10, 0.10}

ρi 0.8 0.82 0.82 0.79 0.79 0.82 0.86
(0.79, 0.84) (0.78, 0.85) (0.77, 0.82) (0.74, 0.82) (0.79, 0.84) (0.83, 0.88)
{0.03, 0.88} {0.03, 0.80} {0.02, 0.98} {0.03, 0.90} {0.03, 0.94} {0.08, 0.26}

σz 0.005 0.0037 0.0035 0.0051 0.0052 0.0038 0.0034
(0.0029, 0.0046) (0.0025, 0.0045) (0.0044, 0.0056) (0.0043, 0.0061) (0.0029, 0.0046) (0.0026, 0.0044)
{0.27, 0.24} {0.33, 0.18} {0.08, 0.98} {0.11, 0.86} {0.26, 0.28} {0.33, 0.16}

σs 0.005 0.0047 0.0043 0.0049 0.0046 0.0047 0.0036
(0.0035, 0.0058) (0.0032, 0.0058) (0.0039, 0.0060) (0.0034, 0.0057) (0.0034, 0.0059) (0.0027, 0.0046)
{0.19, 0.90} {0.22, 0.72} {0.16, 0.86} {0.17, 0.80} {0.21, 0.90} {0.32, 0.38}

σi 0.002 0.0016 0.0014 0.0020 0.0019 0.0016 0.0015
(0.0013, 0.0020) (0.0010, 0.0018) (0.0017, 0.0022) (0.0016, 0.0022) (0.0013, 0.0019) (0.0012, 0.0017)
{0.20, 0.24} {0.31, 0.18} {0.07, 0.90} {0.10, 0.78} {0.20, 0.24} {0.27, 0.10}

φπ 2.0 2.00 2.01 1.95 1.80 1.97 1.62
(1.81, 2.21) (1.82, 2.20) (1.74, 2.14) (1.58, 2.06) (1.76, 2.18) (1.42, 1.86)
{0.06, 0.96} {0.06, 1.00} {0.06, 1.00} {0.12, 0.76} {0.07, 0.96} {0.20, 0.38}

φy 0.5 0.45 0.48 0.46 0.52 0.46 0.50
(0.29, 0.61) (0.28, 0.61) (0.30, 0.63) (0.32, 0.73) (0.31, 0.63) (0.34, 0.66)
{0.22, 1.00} {0.18, 1.00} {0.21, 1.00} {0.23, 1.00} {0.22, 1.00} {0.19, 1.00}

Σ 1.12 1.35 0.78 0.99 1.14 1.82

Table 4: Average,(5, 95) percentiles, and{NRMSE,CR}. Σ is the sum of theNRMSE across the parameters.

E.3 NO M ISSPECIFICATION Table 4compares the parameter estimates after removing model

misspecification. Since it is numerically very expensive toestimate the medium-scale model used

to generate the data with NL-PF, we created new datasets fromthe small-scale model. The sum

of theNRMSE shows about40% of the error is due to model misspecification. For example, in

datasets without any ZLB events, the error with NL-PF-5% increases from1.12 to 1.90 when mis-

specification is added to the estimated model. Removing misspecification has the largest impact on

the accuracy ofϕp, h, andφy because the estimates no longer have to compensate for the lack of

sticky wages and investment, which creates large differences in the model’s sensitivity to shocks.

Notably, the NL-PF-5% estimate ofϕp declines from151.1 to 96.8 and the estimate ofh rises from

0.66 to 0.79 in datasets without ZLB events. TheCR rises from near0 to consistently above0.9.
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The other results emphasized in the paper are unchanged. Theshock standard deviations are

biased downward with NL-PF-5% because the filter incorrectly assigns some of the fluctuations to

ME, reducing the estimated variances. When the ZLB binds in the data, it biases the estimates of

ϕp andρs upward, though NL-PF-5% and OB-IF-0% are both far more accurate than Lin-KF-5%.
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Figure 2: Recession responses without model misspecification. The solid line is the true simulation, the dashed line is
the mean estimated simulation, and the shaded area containsthe(5, 95) percentiles across the datasets. The simulations
are initialized in steady state and followed by four consecutive 1.5 standard deviation positive risk premium shocks.

Figure 2plots the recession responses in figure 3 without misspecification. The solid line shows

the responses based on the true parameterization of the small-scale model, rather than the medium-

scale model that generates our original datasets. The dashed line shows the mean responses, given

the parameter estimates with our alternative datasets. Consistent with the previous results, the re-

sponses based on the NL-PF-5% and OB-IF-0% parameter estimates are very similar. The key dif-
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ference is that the mean estimated simulations are much closer to the true simulation and the(5, 95)

percentiles almost always encompass the truth. This resultshows the muted responses in figure 3

are primarily driven by model misspecification, rather thaninaccuracies in the estimation methods.

E.4 IMPULSE RESPONSES This section shows generalized impulse response functions(GIRFs)

of a productivity growth and monetary policy shock when the economy is in a severe recession and

the ZLB binds. To compute the GIRFs, we follow Koop et al. (1996). We first calculate the mean

of 10,000 simulations, conditional on random shocks in every quarter(i.e., the baseline path). We

then calculate a second mean from another set of10,000 simulations, but this time the shock in the

first quarter is replaced with a two standard deviation negative productivity growth or monetary

policy shock (i.e., the impulse path). Finally, we plot the differences between the two mean paths.

The benefit of a GIRF over a more traditional impulse responsefunction is that it allows us to

calculate the responses in any state of the economy without the influence of mean reversion. For the

true model, we initialize at the state following four consecutive1.5 standard deviation positive risk

premium shocks, consistent with figure 3. We then find a sequence of four equally sized risk pre-

mium shocks that produce the same notional rate in our estimated model as the true model, so the

simulations begin at the same point. The NL-PF-5% simulations are shown in the left column and

the OB-IF-0% simulations are in the right column. The true simulation of the DGP (solid line) is

compared to the mean estimated simulation of the small-scale model (dashed line). The(5, 95) per-

centiles account for differences in the simulations acrossthe parameter estimates for each dataset.

Figure 3ashows the responses to a productivity growth shock. Qualitatively the responses of

output growth and inflation are similar across the specifications. Higher productivity growth in-

creases the output growth gap and decreases the inflation rate like a typical supply shock. Since the

Fed faces a tradeoff between stabilizing the inflation and output gaps, the notional interest rate re-

sponse depends on the parameterization. The notional rate rises with the DGP, but falls with both of

the estimated models. Quantitatively, there are importantdifferences between all of the responses.

Consistent with figure 3, model misspecification leads to muted responses of the output growth

gap and the inflation rate. There are also differences in the magnitudes of the estimated responses,

but most of that is driven by the downward bias in the shock standard deviation with NL-PF-5%.

Figure 3bshows the responses to a monetary policy shock. Although theZLB binds in the true

and estimated models, the shock is expansionary because it lowers the expected nominal interest

rate in future periods. Therefore, the output growth gap andthe inflation rate both increase in all

three models. Unlike with the other two shocks, model misspecification has a relatively small effect

on the responses, as the(5, 95) percentiles of the estimated responses encompass the true responses

in most periods. There are some differences in the NL-PF-5% and OB-IF-0% responses, but they

are smaller than infigure 3aand are never large enough to have meaningful policy implications.
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(a) Productivity Growth Shock
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(b) Monetary Policy Shock
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Figure 3: Impulse responses to a−2 standard deviation shock in a severe recession. The solid line is the true response,
the dashed line is the mean estimated response, and the shaded area contains the(5, 95) percentiles of the responses.
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Figure 4: Estimates of the notional rate in datasets with a 30quarter ZLB event. Rates are net annualized percentages.

E.5 NOTIONAL RATE ESTIMATES Figure 4provides more intuition about what is driving the

relative accuracy of the filtered estimates of the notional rate in figure 1. The top panel plots the

actual notional rate from an example dataset with a 30 quarter ZLB event, as well as the filtered

estimates from NL-PF-5% and OB-IF-0%. Over time, the OB-IF-0% estimate increases towards

zero faster than NL-PF-5%. This may be driven by the lower estimate ofρi (0.77) with OB-IF-0%,

which is slightly below the NL-PF-5% estimate and the true value (0.80). The bottom two panels

plot the error in the average filtered notional rate estimates during the 30 quarter ZLB event across

the 50 datasets (solid line). The shaded region shows the(5, 95) percentiles. This suggests the

example dataset in the top panel is fairly representative. The distribution of errors for OB-IF-0% is

slightly shifted up from the NL-PF-5% error distribution, and increasingly so over time. This may

seem somewhat at odds with the results in figure 1, as OB-IF-0% is even less accurate relative to

NL-PF-5% in the datasets with shorter ZLB events. However the OB-IF-0% estimates ofρi andφy

have an even larger downward bias in datasets with shorter ZLB duration, as shown intable 2.

E.6 ADDITIONAL DATASET STATISTICS ZLB events are frequent in the medium-scale model

that generates the datasets, which allows us to find simulations with up to 30 consecutive quarters
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6Q 12Q 18Q 24Q 30Q

CDF of ZLB Event Durations 0.678 0.885 0.966 0.992 0.998
Number of Simulations to Reach 50 Datasets 150,300 154,950 256,950 391,950 1,030,300

Table 5: Probability of ZLB event durations in a long simulation of the medium-scale model.
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Figure 5: Duration of ZLB events in a long simulation of the medium-scale model.

at the ZLB without imposing restrictions on the shocks. In a long simulation of the model, the

unconditional probability of being at the ZLB is24 percent. This is roughly equivalent to the U.S.

experience of 7 years, since our sample is 30 years. Most of the ZLB events in the simulation are

short, with the policy rate rising above zero within one yearor less, as shown intable 5andfigure 5.

However, long ZLB events are not incredibly uncommon, as0.25 percent of ZLB events have a du-

ration of at least 30 quarters. When generating our datasets, we impose an additional requirement

that the ZLB event in our sample is unique so it reflects actualdata. The number of 120 quarter sim-

ulations required to find50 simulations that meet that criterion is shown in the last rowof table 5.

E.7 GOVERNMENT SPENDING This section shows how government spending affects our re-

sults. Government spending is a potentially important feature because it adds a shock that directly

enters the aggregate resource constraint. Without government spending, any shock in the DGP that

affects the resource constraint is absorbed by consumptionor price adjustment costs in the small-

scale model, since output and inflation are observed. Without a wedge between consumption and

output, it could cause significant bias in the habit persistence and price adjustment cost parameters.

We assume the share of government spending devoted to outputfollows

gst = (1− ρg)ḡ
s + ρgg

s
t−1 + σgεg,t, 0 ≤ ρg < 1, εg ∼ N(0, 1), (22)

where the steady-state share,ḡs, is set to0.2129 to match the time average from 1988Q1-2017Q4.
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With the addition of government spending, the aggregate resource constraint is given by

ct + xt = (1− gst )y
gdp
t . (23)

All other equations in the equilibrium system are unchanged. We add government spending to

the medium-scale model that generates our datasets and our small-scale model for estimation. We

estimate the small-scale model with (gs-4obs) and without (gs-3obs) including real per capita con-

sumption growth as an additional observable. In this secondspecification, the government spend-

ing shock is less constrained, potentially absorbing the adjustment costs left out of the small-scale

model and reducing inaccuracy driven by misspecification inthe aggregate resource constraint.

The specification without government spending (no-gs) excludesgs from the DGP and the esti-

mated model, just like in the main paper. In each case, the true parameterization is unchanged,

except the shock standard deviations were reduced from0.005 to 0.004. This change is neces-

sary because the additional volatility in the model with government spending causes the model

to spend too much time at the ZLB and not converge at the previous parameterization.Table 6

shows the parameter estimates using datasets where the ZLB binds for 30 quarters andtable 7is

based on datasets where the ZLB never binds in the data. OB-IF-0% is not used to estimate these

specifications, since it is not possible to have more shocks than observables in the inversion filter.

Interestingly, the differences in the parameter estimatesbetweengs-4obs and no-gs are fairly

small, especially in datasets where the ZLB binds for 30 quarters. Thegs-4obs estimates ofϕp and

h are more accurate than the no-gs estimates, but they are still significantly biased. Furthermore,

the improvement in those estimates is not as significant as what occurs when we add sticky wages

to the model estimated with OB-IF-0%. This implies that the presence of government spending

helps increase the volatility of output growth, but not enough to compensate for the lack of sticky

wages, which we see as the most important misspecification driving the bias inϕp andh. It

is also important to note that the estimates of the productivity growth and risk premium shock

standard deviations (σz andσs) are biased downward to a greater extent than in the model without

government spending. As a consequence, the sum of theNRMSE with government spending is

higher than without government spending, regardless of theestimation method or the duration of

the ZLB. This result occurs even though thegs-4obs estimates included an additional observable.

Excluding the additional observable (gs-3obs) also does not improve the overall accuracy of the

parameter estimates. The productivity growth and risk premium shock standard deviations become

more accurate than no-gs, but the estimates ofϕp are largely unchanged and the downward bias

in h becomes even larger. As a result, theNRMSE of gs-3obs is higher than thegs-4obs or no-

gs estimates. Once again, this is consistent with the lack of sticky wages as the most important

misspecification, while misspecification in the resource constraint appears to play a smaller role.
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NL-PF-5% (30Q) Lin-KF-5% (30Q)

Ptr Truth no-gs gs-4obs gs-3obs no-gs gs-4obs gs-3obs

ϕp 100 180.8 164.2 183.3 182.8 170.0 188.6
(167.2, 193.5) (145.1, 188.9) (165.2, 203.5) (168.0, 194.5) (150.3, 196.3) (167.6, 210.5)
{0.81, 0.00} {0.65, 0.06} {0.84, 0.00} {0.83, 0.00} {0.71, 0.00} {0.90, 0.00}

h 0.8 0.66 0.71 0.56 0.65 0.71 0.54
(0.63, 0.71) (0.67, 0.74) (0.47, 0.62) (0.62, 0.70) (0.66, 0.74) (0.43, 0.61)
{0.17, 0.00} {0.11, 0.00} {0.31, 0.00} {0.18, 0.00} {0.12, 0.00} {0.33, 0.00}

ρs 0.8 0.84 0.86 0.84 0.85 0.87 0.84
(0.81, 0.86) (0.84, 0.88) (0.80, 0.87) (0.82, 0.87) (0.85, 0.90) (0.81, 0.88)
{0.05, 0.48} {0.08, 0.10} {0.05, 0.62} {0.06, 0.36} {0.09, 0.12} {0.06, 0.58}

ρi 0.8 0.81 0.81 0.81 0.83 0.83 0.85
(0.78, 0.84) (0.77, 0.84) (0.77, 0.85) (0.80, 0.86) (0.80, 0.88) (0.81, 0.89)
{0.03, 0.94} {0.03, 0.96} {0.03, 0.92} {0.04, 0.80} {0.05, 0.70} {0.07, 0.28}

ρgs 0.8 − 0.89 0.82 − 0.89 0.83
(0.85, 0.93) (0.80, 0.84) (0.85, 0.93) (0.82, 0.86)
{0.12, 0.28} {0.03, 1.00} {0.12, 0.20} {0.04, 1.00}

σz 0.004 0.0030 0.0028 0.0034 0.0031 0.0029 0.0036
(0.0023, 0.0037) (0.0019, 0.0037) (0.0026, 0.0047) (0.0024, 0.0038) (0.0021, 0.0041) (0.0025, 0.0052)
{0.26, 0.40} {0.33, 0.20} {0.21, 0.94} {0.25, 0.40} {0.30, 0.28} {0.22, 0.88}

σs 0.004 0.0031 0.0024 0.0036 0.0029 0.0023 0.0034
(0.0025, 0.0039) (0.0020, 0.0030) (0.0026, 0.0049) (0.0023, 0.0036) (0.0018, 0.0029) (0.0025, 0.0047)
{0.25, 0.50} {0.40, 0.04} {0.20, 0.82} {0.30, 0.26} {0.44, 0.00} {0.22, 0.70}

σi 0.002 0.0015 0.0015 0.0015 0.0014 0.0015 0.0015
(0.0013, 0.0018) (0.0011, 0.0018) (0.0011, 0.0017) (0.0011, 0.0016) (0.0012, 0.0017) (0.0012, 0.0017)
{0.24, 0.22} {0.26, 0.28} {0.29, 0.22} {0.33, 0.00} {0.26, 0.10} {0.27, 0.10}

σg 0.004 − 0.0044 0.0025 − 0.0044 0.0025
(0.0039, 0.0049) (0.0018, 0.0032) (0.0039, 0.0049) (0.0018, 0.0033)
{0.13, 0.74} {0.39, 0.16} {0.13, 0.70} {0.40, 0.20}

φπ 2.0 2.27 2.09 2.23 2.10 1.73 1.90
(2.13, 2.47) (1.85, 2.34) (2.00, 2.45) (1.91, 2.32) (1.31, 2.04) (1.62, 2.13)
{0.14, 0.64} {0.08, 0.90} {0.13, 0.68} {0.08, 0.92} {0.17, 0.72} {0.09, 0.96}

φy 0.5 0.38 0.50 0.47 0.36 0.41 0.44
(0.26, 0.55) (0.34, 0.63) (0.24, 0.64) (0.22, 0.51) (0.30, 0.58) (0.31, 0.64)
{0.29, 0.98} {0.18, 0.98} {0.21, 0.96} {0.33, 0.94} {0.25, 0.98} {0.23, 0.98}

Σ 2.26 2.38 2.70 2.39 2.64 2.83

Table 6: Average,(5, 95) percentiles, and{NRMSE,CR}. Σ is the sum of theNRMSE across the parameters.
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NL-PF-5% (0Q) Lin-KF-5% (0Q)

Ptr Truth no-gs gs-4obs gs-3obs no-gs gs-4obs gs-3obs

ϕp 100 157.9 128.8 148.8 157.7 128.8 149.2
(130.0, 175.8) (109.2, 143.7) (128.8, 163.8) (130.1, 175.3) (109.5, 142.8) (129.4, 164.3)
{0.59, 0.00} {0.31, 0.34} {0.50, 0.00} {0.59, 0.02} {0.31, 0.38} {0.50, 0.00}

h 0.8 0.64 0.68 0.57 0.64 0.68 0.57
(0.60, 0.69) (0.65, 0.72) (0.47, 0.66) (0.60, 0.69) (0.65, 0.72) (0.48, 0.66)
{0.20, 0.00} {0.15, 0.00} {0.30, 0.00} {0.20, 0.00} {0.15, 0.00} {0.29, 0.00}

ρs 0.8 0.79 0.81 0.78 0.79 0.81 0.78
(0.74, 0.82) (0.76, 0.85) (0.72, 0.83) (0.74, 0.83) (0.77, 0.85) (0.72, 0.83)
{0.03, 0.94} {0.03, 0.90} {0.05, 0.86} {0.03, 0.96} {0.04, 0.90} {0.05, 0.86}

ρi 0.8 0.79 0.78 0.80 0.79 0.78 0.80
(0.74, 0.82) (0.74, 0.82) (0.76, 0.83) (0.74, 0.82) (0.75, 0.82) (0.76, 0.83)
{0.04, 0.86} {0.04, 0.84} {0.03, 0.98} {0.04, 0.88} {0.03, 0.92} {0.03, 0.98}

ρgs 0.8 − 0.82 0.81 − 0.82 0.80
(0.76, 0.87) (0.76, 0.84) (0.77, 0.86) (0.75, 0.83)
{0.05, 0.94} {0.03, 1.00} {0.04, 0.94} {0.03, 1.00}

σz 0.004 0.0029 0.0023 0.0027 0.0029 0.0023 0.0027
(0.0022, 0.0037) (0.0018, 0.0029) (0.0019, 0.0036) (0.0022, 0.0037) (0.0018, 0.0029) (0.0019, 0.0036)
{0.29, 0.22} {0.43, 0.00} {0.36, 0.54} {0.29, 0.28} {0.43, 0.00} {0.36, 0.50}

σs 0.004 0.0032 0.0025 0.0036 0.0032 0.0025 0.0037
(0.0025, 0.0038) (0.0021, 0.0030) (0.0026, 0.0049) (0.0025, 0.0039) (0.0020, 0.0030) (0.0027, 0.0049)
{0.23, 0.52} {0.38, 0.02} {0.19, 0.84} {0.23, 0.54} {0.38, 0.02} {0.19, 0.84}

σi 0.002 0.0018 0.0018 0.0017 0.0018 0.0018 0.0017
(0.0015, 0.0021) (0.0015, 0.0021) (0.0014, 0.0020) (0.0015, 0.0021) (0.0015, 0.0020) (0.0014, 0.0020)
{0.15, 0.60} {0.15, 0.60} {0.17, 0.48} {0.15, 0.62} {0.15, 0.56} {0.16, 0.50}

σg 0.004 − 0.0041 0.0033 − 0.0041 0.0033
(0.0037, 0.0046) (0.0025, 0.0039) (0.0036, 0.0046) (0.0025, 0.0038)
{0.08, 0.84} {0.20, 0.52} {0.08, 0.84} {0.20, 0.56}

φπ 2.0 2.11 1.92 2.08 2.10 1.92 2.08
(1.97, 2.24) (1.67, 2.25) (1.87, 2.34) (1.97, 2.24) (1.66, 2.27) (1.86, 2.32)
{0.07, 1.00} {0.09, 1.00} {0.08, 0.94} {0.07, 0.98} {0.09, 0.98} {0.08, 0.96}

φy 0.5 0.39 0.53 0.52 0.39 0.53 0.52
(0.26, 0.53) (0.34, 0.70) (0.30, 0.69) (0.27, 0.52) (0.34, 0.70) (0.30, 0.68)
{0.26, 1.00} {0.22, 0.98} {0.23, 1.00} {0.27, 1.00} {0.22, 0.98} {0.23, 1.00}

Σ 1.87 1.92 2.12 1.86 1.91 2.12

Table 7: Average,(5, 95) percentiles, and{NRMSE,CR}. Σ is the sum of theNRMSE across the parameters.
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