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ABSTRACT

This document contains the detrended equilibrium systairtenhnical information about
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ing information about the bias in the price adjustment cost laabit persistence parameters,
parameter estimates using datasets with shorter ZLB dusatestimates without misspecifi-
cation, impulse responses to productivity growth and memyetolicy shocks, filtered paths of
the notional interest rate, statistics about our dataaatsestimates with government spending.
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A DETRENDEDEQUILIBRIUM SYSTEM
Medium-Scale Model The detrended system includes (1), (6), (7), (9), (16), &hd)

Gr = (vike_1/2)"n; =, (1)

Tf = Oémctztgt/(vt/;?t—l)a (2)

Wy = (1 — a)megge /e, 3)

w{ = mzpy ) (T2W0e—1), 4)

G = (L= gp(m/7 = 1)°/2 — pu(w] = 1)*/2] —urks1 /. (5)
vl = =i ) ™), (6)

At = & — hé—1/z, (7)

12){ = Xn?:\t, (8)

Ct + Tt = Y, )

r) = 2% )(ZT4-1), (10)

o= (1= 6)(ke—1/2) + (1 — v(a] — 1)%/2), (11)

1= BE[(A/Nig1) (seit/ (zer17mi41))], 12)

@ = BE((Ne/ X)) (rfp1ven — wpgn + (1= 8) @) /2041), (13)
1=l —v(af —1)%/2 = v(af — D] + BrzEfgm O/ dep) (@8, (@ — 1) /2], (14)

op(me /T — 1)(m/7) = 1 = O+ Opmcs + Bop Bel(Ae /A1) (meg1 /7 — 1) (misa /7) (§esa /3)], (15)
(W] — Dwf = [(1 = 00y + 0] 0o/t + BowEe (M) A1) (wiyy — Dwfy (Gesr /3], (16)

The variables aré, n, z, k. §, 9%, u, v, w9, 29, y9, @', @, ¥, 7, ,i", ¢, me, A, z, ands.

Small-Scale Model The detrended system includes (1), (7), (16), (17), (3@),(®6), (39), and

Yr = N, (17)

Wy = mei/n, (18)
=1 — gp(m/7 ~ 1) Ui, (19)
Wy = xn A, (20)

& = g™ (21)

The variables aré, n, §. 9%, 49, . 7.4, i", me, \, z, ands.
) 7y7y 7y ) M ) M ) M )

B NONLINEAR SOLUTION METHOD

We begin by compactly writing the detrended nonlinear eguilm system as

E[f(st-',-la St, 5t+1)|Zt, 19] =0,



wheref is a vector-valued functior, is a vector of variables;; = [es 4, €.+, €:4) IS @ vector of
shocksg; is a vector of statex{ = [¢;_1, i} 4, K1, Fp1, W1, St 2, e;) for the model with cap-
ital andz; = [¢;—1, 4} 4, st, 21, ;4] for the model without capital), andlis a vector of parameters.

There are many ways to discretize the exogenous state kewjay z;, ande; ;. We use the
Markov chain in Rouwenhorst (1995), which Kopecky and Su1.0) show outperforms other
methods for approximating autoregressive processes. dteds onc,_,, i} 4, ki1, 71, and
w1 are respectively set t&2.5%, +6%, +£8%, +15%, +4% of their deterministic steady state.
These bounds were chosen so the grids co®@its of the simulated values for each state vari-
able and ZLB duration. We discretize the states ihvenly-spaced points, except for capital
and the risk premium which uséd and13 points, respectively. The product of the points in each
dimension,D, represents the total nodes in the state spare-(16,823,807 for the model with
capital andD = 31,213 for the model without capital). The realizationffon noded is denoted
z:(d). The Rouwenhorst method provides integration no@les; (m), z:+1(m), € ++1(m)], with
weights,p(m), form € {1,..., M }. Since the exogenous variables evolve according to a Markov
chain, the number of future realizations is the same as #te gariables(13,7,7) or M = 637.

The vector of policy functions is denotgd, and the realization on nodegis denotedbf,(d)
(pf, = [Ci(ze), TP (21), ni(2Z1), @:(21), v1(2)] fOr the capital model angf, = [¢:(z;), 7/’ (z;)] for
the model without capital, where’**(z;) = m,(z,)/7). Our choice of policy functions, while not
unique, simplifies solving for the other variables in the ln@ar system of equations given

The following steps outline our global policy function iéion algorithm:

1. Use Sims’s (200)ensys algorithm to solve the level-linear model without the ZLBneo
straint. Then map the solution to the discretized stateesfmainitialize the policy functions.

2. Oniterationy € {1,2,...} and each nodé € {1, ..., D}, use Chris Sims’ssol ve to find
pf,(d) to satisfyE[f(-)|z,(d), V] ~ 0. Guesf,(d) = pf,_,(d). Then apply the following:
(a) Solve for all variables dated at timegivenpf,(d) andz;(d).

(b) Linearly interpolate the policy functionsf;_,, at the updated state variables, (),
to obtainpf, ., (m) on every integration nodey € {1,..., M}.

(c) Given{pf, ,(m)}_,, solve for the other elements sf. ; (m) and compute

m=1"
E[f (st+1,50(d), £01)|20(d), 0] & 30y 6(m) f(s1(m), 50(d), €11(m)).
Whencsol ve converges, saif;(d) = pf,(d).

3. Repeat step 2 untihaxdist; < 107°, wheremaxdist; = max{|pf; — pf;_,|}. When that
criterion is satisfied, the algorithm has converged to amapmate nonlinear solution.



C ESTIMATION ALGORITHM

We use a random walk Metropolis-Hastings algorithm to est@rthe model in section 3 with
artificial data of120 quarters. To measure how well the model fits the data, we tiserehe
adapted particle filter described in Algorithm 14 in Herbsd &chorfheide (2016), which modifies
the basic bootstrap filter in Stewart and McCarty (1992) anct@n et al. (1993) to better account
for the outliers in the data, or the inversion filter recentbed by Guerrieri and lacoviello (2017).

C.1 METROPOLISHASTINGS ALGORITHM The following steps outline the algorithm:

1. Generate artificial data consisting of the output grovéth, ghe inflation rate, and the nomi-
nal interest ratex, = [y/, m, i)', whereN,, = 3 is the number of observable variables.

2. Specify the prior distributions, means, variances, anthids of each element of the vector
of N, estimated paramete= [y,, ¢x, ¢y, h, ps, pi, 04,05, 04].

3. Find the posterior mode to initialize the preliminary kigtolis-Hastings step.

(@) Foralli € {1,..., N,,}, whereN,, = 5,000, apply the following steps:

i. Draw 6; from the joint prior distribution and calculate its densiglue:
log (277" = 3" log p(0: 415, 02),

wherep is the prior density function of parametewith meany,; and variancerf.

ii. Solve the model giver;. Follow Appendix B for the nonlinear model and use
OccBin for the PW linear model. Repeat 3(a)i if the algorithoes not converge.

iii. Obtain the model log-likelihoodlog ¢7**4!. Apply the particle filter described in
Appendix C.2 to the nonlinear model and the inversion fileethe PW linear
model.

iv. The posterior log-likelihood igog (7" = log (""" + log £mo%!

(b) Calculatemax(log /4, ..., log (%*") and find the corresponding parameter vedar,

4. Approximate the covariance matrix for the joint postedistribution of the parameters,,
which is used to obtain candidate draws during the prelingiMetropolis-Hastings step.

(a) Locate the draws with a likelihood in the top decile. 8td®e N,, .., = (1 — p)N,,
draws in aN,,, .., X N, matrix,©, and defing® = © — S §, . /N,., ..

(b) Calculate: = ©'6/N,, .., and verify it is positive definite, otherwise repeat step 3.

5. Perform an initial run of the random walk Metropolis-Hags algorithm.
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(@) Foralli € {0,..., Ny}, whereN, = 25,000, perform the following steps:

i. Draw a candidate vector of parametgis?, where

N(éo,COZ) fori = 0,

N(#;_1,¢3) fori > 0.

92’ cand ~

We setcy = 0 and tune to target an overall acceptance rate of roughlyt.
ii. Calculate the prior density valulyg (*"", of the candidate draw""?, as in 3(a)i.
iii. Solve the model giveréf“"d. If the algorithm does not converge repeat 5(a)i.
iv. Obtain the model log-likelihood valugyg /°%!, using the methods in 3(a)iii.

v. Accept or reject the candidate draw according to

(Beamd log feand) if § = 0,
(6:,1og £;) = { (Beamd log ¢5and) if min(L, 65974 /0, ) > 4,

A~

(0;—1,10g ;1) otherwise

wherew is a draw from a uniform distributionlJ[0, 1], and the posterior log-
likelihood associated with the candidate drawois(¢*? = log (7" 4 log (%!,

(b) Burn the firstlV, = 5,000 draws and use the remaining sample to calculate the mean

draw,6°® = S°¥4 . 0;/(Ny— Ny), and the covariance matrix’®. We follow step

4 to calculate=®® but use allV, — N, draws instead of just the uppgth percentile.

6. Conduct a final run of the Metropolis-Hastings algorithyrépeating step 5, wher¥,; =
50,000, 6, = 65", andy; = 35®), The final posterior mean estimates ére " 6;/N,.

C.2 ADAPTED PARTICLE FILTER Henceforth, our definition of; from Appendix B is referred
to as the state vector, which should not be confused withtétte gariables for the nonlinear model.

1. Initialize the filter by drawinde, ,})__,, forall p € {0, ..., N,} and simulating the model,
whereN,, is the number of particles. We initialize the filter with thedi state vectos, ,,,

which is approximately a draw from the model’s ergodic dbsttion. We setV,, = 40,000.
2. Fort € {1,...,T}, sequentially filter the nonlinear model as follows:

(a) Forp € {1,...,N,}, draw shocks from an adapted distributien, ~ N(&;, I'), where
&, maximizesp(&;|s;)p(s¢|8;—1) ands,_; = E;V:”l st—1,/ N, is the mean state vector.

i. Use the model solution to update the state vesiogivens;_; and a guess faf;.
Defines} = Hs;, whereH selects the observable variables from the state vector.
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ii. Calculate the measurement errgr= s} —x;, which is assumed to be multivariate
normally distributedp(&|s;) = (27)%2|R|~/? exp(—& R71¢,/2), whereR =

diag(c?, 4,02, .02 ;) is a diagonal matrix of measurement error variances.

me,y9’ Y me,m ¥ me,i

iii. The probability of observing the current stasg, conditional ors;_1, is given by
p(si|si—1) = (2m) 732 exp(—2]5,/2).

iv. Maximizep(&|s;)p(si|si_1) o< exp(—&R™¢,/2) exp(—£,&;/2) by solving for the
optimalz;. We use MATLAB'’sf m nsear ch routine converted to Fortran.
(b) Use the model solution to predict the state veetgy, givens,_; , ande; .
(c) Calculatet,;, = sﬁp — x;. The unnormalized weight on partiglas given by

_ P(&ilStp)P(StplSt-1p) eXp(—fé’pR_1€t7p/2) eXp(_gi,pgt,p/m
tp — 0.8 —; — .
9(StplSt—1,p,Xt) exp(—(etp — &)/ (Erp — €1)/2)

Without adaptations; = 0 andw;, = p(&]s:,), @s in a basic bootstrap particle filter.
The time¢ contribution to the model log-likelinood &% = Y™™ w, /N,

(d) Normalize the weightd}; , = w;,/ Z;V:Pl wgp. Then use systematic resampling with
replacement from the swarm of particles as described ingitea (1996) to get a set
of particles that represents the filter distribution andhuodite {st,p}j,vil accordingly.

3. The model log-likelihood igog (% = ST log £,

Aruoba et al. (2018) apply the same methodology to a New Kagnenodel with sunspot shocks.
See Herbst and Schorfheide (2016) for a comprehensivesdigcuof the different particle filters.

D CONTINUOUSRANK PROBABILITY SCORE(CRPS) EXAMPLE

Figure 1shows an example of the 8-quarter ahead forecast distribafithe nominal interest rate
given the parameter estimates from NL-FF- We picked a dataset where the ZLB binds for six
guarters, from perio@0 to 95 in the sample. The forecasts are initialized at the filtetatesn
period89, immediately before the ZLB first binds, and the forecastritistion is approximated
based o 0,000 simulations. Due to a strong tendency for the forecastsviert¢o the stochastic
steady state, the mean forecast for the nominal interestigat32%. However, the probability
density function (PDF) in the left panel shows a significamiber of forecasts remain near or at
the ZLB, even after 8 quarters. The true realization equal$’, which means there is signifi-
cant probability mass under the PDF above and below the alueev The right panel shows the
cumulative distribution function (CDF) of the forecasthiel’RPS for this dataset and estimation
method is closely related to the shaded area, which has tie saits as the forecasted variable.
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Figure 1: Example forecast distribution in the period befibre ZLB binds in the data.

E ADDITIONAL RESULTS

First, we examine the sources of the bias in the estimatdwedfdbit persistence and price adjust-
ment cost parameters. Second, we report the parameteagssifor datasets with ZLB events be-
tween 0 and 30 quarters long. Third, we show how misspedditaffects the parameter estimates
and impulse responses using generated data from our sca#l+model. Fourth, we plot impulse
responses to a productivity growth and monetary policy khwleen the ZLB binds. Fifth, we
compare the filtered paths of the notional interest ratethSixe provide additional statistics about
the ZLB events in our datasets. Finally, we examine how gowent spending affects our results.

E.1 RRICE ADJUSTMENT COST AND HABIT PERSISTENCE In table 4, estimates of the price
adjustment cost4,) and habit persistencé) parameters have some of the largeBMSEs, even
in datasets without a ZLB event. These parameters areatifiticoutput and inflation dynamics, so
understanding the source of the bias is important for imé&tipg our results. The small-scale model
lacks important shock amplifiers for output, such as sticlges and variable capital utilization.
Therefore, the response of output growth is too small whemtbdel is parameterized with the true
values. Conversely, the lack of sticky wages means margosis are overly volatile and inflation
is too sensitive to shocks. If misspecification impacteddsponses of output growth and inflation
in the same direction, the estimated shock size would hage affected. Instead, estimateshof
are lower than the true value, amplifying the response gfi@uEstimates ap,, are biased upward,
flattening the price Phillips curve and stabilizing inflatidespite overly volatile marginal costs.
Another potentially important source of the bias is the messfication in the aggregate re-
source constraint. Movements in wage adjustment costgatafilization costs and other terms
could be interpreted as price adjustment costs throughgarastimate ofy,. However, that is



unlikely to drive the bias in estimates ¢f andh. The NL-PF&5% and Lin-KF5% estimates of
v, andh are very similar, despite the absence of price adjustmests @0 the aggregate resource
constraint in the linear model (i.ej, = 4/ = ¢,). Therefore, the upward bias in, is not the
result of price adjustment costs absorbing the gap betwaeesuenption and output in the DGP.
The middle columns of table 5, where only sticky wages areeddd the small-scale model,
support these conclusions. In particular, in datasetsowith ZLB event, there is virtually no bias
in the OB-IF0% estimates ofy, andh, but there is a large upward biasdf. When sticky wages
are added, the volatility of output growth is still too smdile to the absence of investment and
capital utilization, but the volatility of inflation is nowrpportionally too small as wellr, increases
to match the dynamics of the output and inflation data, whitdy, remain close to their true
values. In the right two columns of table 5, the full modelstimated and, is close to the truth.

Ptr  Truth NL-PF-%%, OB-IF-0% Lin-KF-5%
0Q 30Q 0Q 30Q 0Q 30Q
Ds 0.8 0.43 0.52 0. 0.44 0.43 0.55
Eo.sz 0.50% §0.40, 0.68% EO 31,0. 47% EO 26, 0. 71% EO 35, 0. 50% 50.40, 0.77§
0.47,0.00 0.37,0.04 0.52,0.00 0.48, 0.04 0.47,0.00 0.33,0.12
Di 0.8 0.74 0.75 0.69 0.68 0.74 0.79
0.69,0.78 0.71,0.81 0.65,0.73 0.62,0.73 0.70,0. 0.73,0.84
Eo.og, 0.26%» Eo 07, 0. 52% Eo 15,0. 00% Eo 16,0. 00% Eo 09, 0. 30% go 05, 0. 86%
o, 0.005 0.0052 0.0062 0.0086 0.0107 0.0053 0.0078
(0.0041,0.0067)  (0.0037,0.0134)  (0.0069, 0.0099)  (0.0071,0.0163)  (0.0041,0.0067)  (0.0042,0.0138)
{0.17,0.88} {0.54,0.82} {0.73,0.00} {1.28,0.00} {0.17,0.86} {0.83,0.44}
os 0.005 0.0166 0.0196 0.0183 0.0239 0.0169 0.0169
(0.0139,0.0212)  (0.0113,0.0261)  (0.0143,0.0230)  (0.0085,0.0355)  (0.0141,0.0216)  (0.0065, 0.0257)
{2.37,0.00} {3.04,0.12} {2.71,0.00} {4.15,0.04} {2.42,0.00} {2.59,0.12}
o; 0.002 0.0018 0.0016 0.0021 0.0021 0.0018 0.0017
(0.0015,0.0022)  (0.0014,0.0021)  (0.0019,0.0023)  (0.0019,0.0025)  (0.0015,0.0022)  (0.0015,0.0020)
{0.13,0.64} {0.21,0.38} {0.09,0.78} {0.11,0.78} {0.13,0.64} {0.16,0.44}
On 2.0 2.04 2.03 1.96 1.84 2.01 1.64
1.81,2.23 1.84,2.33 1.70,2.21 1.53,2.24 1.78,2.22 1.41,1.89
Eo.m, 0.96%» Eo.m, 0.90% Eo.os, 0.96%» §0.14, 0.80%» Eo 07,0. 98% go 19, 0. 44%
Dy 0.5 0.23 0.29 0.13 0.20 0.24 0.19
0.11,0.40 0.14,0.50 0.05, 0.22 0.05,0.35 0.11,0.41 0.08,0.36
§0.56,0.32%» Eo 49.0. 54% §0.75,0.02% §0.65,0.10% Eo 56.0. 30% go 64, 0. 18%»
> 3.86 4.80 5.02 6.96 3.91 8

Table 1: Average(5, 95) percentiles, andNRMSE, CR}. ¥ is the sum of th&WRMSE across the parameters.

Lastly, we fixedy, andh to their true values and re-estimated each specificatitable 1
reports the results, which show how other parameters adjugiarticular,o, is now3 to 4 times
higher than its true value and drops to roughly half of its true value. TR&RMSEs for o, are
by far the largest of any parameter and ths are all neaf. In this exerciseh cannot fall to
compensate for the missing frictions, so the size of thepigknium shocks must increase. This
effect, in addition to not allowing, to increase to compensate for the lack of sticky wages, egluc
too much inflation volatility. Therefore, the estimate akipremium persistenceg,, falls. Unlike
its shock size, its persistence affects the inflation respamore than the output growth response.



Ptr  Truth 0Q 6Q 12Q 18Q 24Q 30Q
NL-PF-5%
©p 100 151.1 161.0 172.1 180.6 187.2 188.4
(134.2,165.8) (143.2,179.3) (153.8,193.4) (161.3,201.4) (167.0,204.5) (174.7,202.7)
{0.52,0.02} {0.62,0.00} {0.73,0.00} {0.81,0.18} {0.88,0.00} {0.89,0.00}
h 0.8 0.66 0.66 0.67 0.67 0.68 0.68
§0.62, 0.70% §0.61, 0.71% §0.62, 0.71% §0.63, 0.71% §0.64, 0.72% §0.64, 0.71%
0.18,0.00 0.17,0.00 0.17,0.00 0.16,0.00 0.15,0.00 0.16,0.00
Ds 0.8 0.76 0.77 0.79 0.80 0.81 0.81
(0.72, 0.80) (0.74,0.81) (0.75,0.82) (0.77,0.84) (0.78,0.83) (0.78,0.84)
{0.06,0.70} {0.04,0.86} {0.03,0.98} {0.03,0.92} {0.02,0.96} {0.03,0.90}
Di 0.8 0.79 0.79 0.79 0.80 0.80 0.80
0.75,0.82 0.75,0.82 0.77,0.82 0.76,0.83 0.76,0.84 0.75,0.84
Eo 03,0 96% 50.04, 0.90% 50.02, 1 ooi Eo 03, 0.94% 50.03, 0.94% Eo 03,0 96%»
o, 0.0050 0.0032 0.0032 0.0034 0.0037 0.0038 0.0040
(0.0023,0.0039)  (0.0023,0.0041)  (0.0024,0.0044)  (0.0027,0.0049)  (0.0027,0.0047)  (0.0030, 0.0052)
{0.37,0.00} {0.38,0.08} {0.34,0.18} {0.29,0.38} {0.28,0.46} {0.23,0.58}
os 0.0050 0.0052 0.0052 0.0051 0.0051 0.0050 0.0050
(0.0040, 0.0066)  (0.0042, 0.0068)  (0.0040,0.0060)  (0.0034,0.0064)  (0.0041,0.0064)  (0.0039, 0.0062)
{0.15,0.92} {0.15,0.92} {0.13,0.98} {0.18,0.86} {0.12,1.00} {0.13,0.96}
o; 0.0020 0.0017 0.0017 0.0016 0.0016 0.0015 0.0015
(0.0014,0.0020)  (0.0014,0.0019)  (0.0014,0.0019)  (0.0013,0.0019)  (0.0013,0.0018)  (0.0013, 0.0019)
{0.17,0.48} {0.18,0.40} {0.21,0.30} {0.24,0.26} {0.25,0.20} {0.24,0.20}
On 2.0 2.04 2.06 2.12 2.13 2.10 2.13
(1.88,2.19) (1.87,2.24) (1.94,2.33) (1.90,2.41) (1.84,2.33) (1.94,2.31)
{0.06,0.98} {0.07,0.96} {0.08,0.92} {0.10,0.94} {0.09,0.90} {0.09,0.92}
Dy 0.5 0.35 0.39 0.41 0.40 0.41 0.42
EO 21, 054% EO 22, 0.61%L EO 27, 0.60% EO 26, 0.54% EO 26, 0.61% EO 27, 0.62%
0.36, 0.80 0.31,0.92 0.27,1.00 0.27,0.92 0.27,0.98 0.28,0.98
b)) 1.90 1.96 1.99 2.12 2.09 2.08
OB-IF-0%
©p 100 142.6 152.5 164.5 174.7 183.1 183.4
(121.1,157.3) (131.3,170.7) (140.8, 185.5) (153.9, 202.0) (165.3,204.1) (169.2,198.5)
{0.44,0.08} {0.54,0.02} {0.66,0.00} {0.76,0.00} {0.84,0.00} {0.84,0.00}
h 0.8 0.64 0.64 0.63 0.63 0.63 0.63
§0.61, 0.67% §0.61, 0.68% §0.60, 0.67% §0.61, 0.67% §0.59, 0.67% §0.60, 0.67%
0.20,0.00 0.20,0.00 0.21,0.00 0.21,0.00 0.21,0.00 0.21,0.00
Ds 0.8 0.76 0.77 0.80 0.81 0.82 0.82
(0.73,0.81) (0.73,0.81) (0.76,0.83) (0.78,0.85) (0.80, 0.85) (0.79, 0.86)
{0.05,0.82} {0.04,0.92} {0.03,0.96} {0.03,0.86} {0.03,0.76} {0.04,0.78}
i 0.8 0.76 0.75 0.76 0.76 0.76 0.77
p 0.71,0.79 0.71,0.80 0.73,0.79 0.68,0.80 0.72,0.81 0.73,0.81
Eo.oa, 0.52% 50.07, 0.50% Eo 06,0 54% Eo 06,0 58%» Eo.oa, 0 58%» Eo 05,0 66%»
o, 0.0050 0.0051 0.0053 0.0056 0.0059 0.0060 0.0059
(0.0044,0.0058)  (0.0048,0.0068)  (0.0047,0.0066)  (0.0051,0.0079)  (0.0051,0.0074)  (0.0050, 0.0069)
{0.09, 0.92} {0.13,0.82} {0.19,0.60} {0.24,0.54} {0.25,0.46} {0.22,0.30}
os  0.0050 0.0051 0.0051 0.0048 0.0047 0.0045 0.0046
(0.0042,0.0063)  (0.0041,0.0063)  (0.0039,0.0058)  (0.0031,0.0058)  (0.0037,0.0053)  (0.0036, 0.0056)
{0.13,0.92} {0.14,0.96} {0.13,0.90} {0.18,0.76} {0.15,0.80} {0.15,0.82}
o; 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020
(0.0018,0.0023)  (0.0018,0.0023)  (0.0018,0.0022)  (0.0018,0.0024)  (0.0018,0.0023)  (0.0019, 0.0024)
{0.08,0.90} {0.07,0.90} {0.07,0.98} {0.09,0.82} {0.08,0.88} {0.09,0.90}
o 2.0 2.01 1.96 1.99 1.97 1.94 1.96
1.84,2.16 1.77,2.16 1.78,2.16 1.73,2.23 1.69,2.19 1.77,2.14
Eo.oa, 0.98% 50.07, 0.98% Eo.oa, 0.98%» Eo.os, 0.96%» Eo.os, 0.90%» Eo 06, 0.98%
Oy 0.5 0.32 0.35 0.39 0.36 0.41 0.44
: 50.17, 0.48% 50.18, 0.53% 50.24, 0.56% Eo.zo, 0.52% 50.21, 0.62% EO 27, 0.61%
0.41,0.68 0.37,0.76 0.30,0.90 0.35,0.80 0.29,0.90 0.25,0.98
b)) 1.53 1.63 1.71 2.01 1.99 1.91

Table 2: Average(5, 95) percentiles, andNRMSE, CR}. ¥ is the sum of th&WRMSE across the parameters.



Ptr  Truth 0Q 6Q 12Q 18Q 24Q 30Q
Lin-KF-0%
©p 100 143.0 153.3 167.2 177.5 186.3 186.9
(125.9, 157.7) (134.2,168.4) (147.0,196.6) (157.1,204.9) (165.6, 204.5) (168.5,201.1)
{0.44,0.04} {0.54,0.00} {0.69,0.00} {0.79,0.00} {0.87,0.00} {0.88,0.00}
h 0.8 0.64 0.64 0.64 0.64 0.64 0.63
0.61,0.68 0.60,0.68 0.60,0.67 0.62,0.67 0.60,0.67 0.60,0.67
§0.20, 0.00%» §0.20, 0.00%» <§0.20, 0.00% §0.20, 0.00% §0.20, 0.00% §0.21, 0.00%
Ds 0.8 0.76 0.77 0.80 0.81 0.82 0.82
(0.72, 0.80) (0.74, 0.80) (0.76,0.83) (0.76,0.84) (0.80, 0.85) (0.80, 0.85)
{0.06,0.74} {0.04,0.88} {0.03,1.00} {0.03,0.92} {0.03,0.82} {0.04,0.78}
Di 0.8 0.76 0.77 0.78 0.79 0.80 0.81
0.73,0.79 0.72,0.80 0.75,0.81 0.74,0.84 0.77,0.85 0.77,0.85
Eo.oa, 0 62% Eo 05,0 70% Eo 04,0 92% Eo 03,0 88% Eo 03,0 90% Eo 03,0 90%
o, 0.0050 0.0049 0.0051 0.0055 0.0057 0.0060 0.0059
(0.0043,0.0054)  (0.0045,0.0058)  (0.0048,0.0066)  (0.0051,0.0067)  (0.0049,0.0071)  (0.0051,0.0068)
{0.07,0.90} {0.08,0.88} {0.16,0.56} {0.17,0.50} {0.23,0.32} {0.21,0.28}
os 0.0050 0.0052 0.0051 0.0048 0.0048 0.0045 0.0045
(0.0043,0.0064)  (0.0042,0.0062)  (0.0040,0.0058)  (0.0035,0.0059)  (0.0038,0.0053)  (0.0036, 0.0052)
{0.14,0.86} {0.14,0.96} {0.12,0.96} {0.15,0.86} {0.15,0.78} {0.15,0.86}
o; 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0019
(0.0018,0.0022)  (0.0018,0.0022)  (0.0018,0.0023)  (0.0016,0.0022)  (0.0017,0.0022)  (0.0017, 0.0022)
{0.07,0.96} {0.07,0.88} {0.08,0.88} {0.08,0.82} {0.08,0.88} {0.08,0.88}
On 2.0 2.01 1.96 1.85 1.78 1.65 1.69
(1.85,2.15) (1.71,2.17) (1.60, 2.07) (1.51,2.04) (1.42,1.92) (1.46,1.89)
{0.06,0.98} {0.07,1.00} {0.10,0.94} {0.14,0.76} {0.19,0.44} {0.17,0.64}
Dy 0.5 0.32 0.32 0.28 0.26 0.25 0.28
50.18, 0.48%L EO 20, 0.523L EO 11, 0.48% EO 14, 0.43% EO 15, 0.37% EO 17, 0.44%
0.40,0.72 0.41,0.60 0.48,0.50 0.51,0.32 0.51,0.32 0.47,0.44
b)) 1.49 1.62 1.89 2.10 2.30 2.24
Lin-KF-5%
©p 100 151.4 161.1 174.8 183.1 191.1 191.6
(134.0, 165.7) (142.0, 179.5) (153.7,198.6) (163.0, 208.5) (172.1,210.9) (175.3,204.1)
{0.52,0.00} {0.62,0.00} {0.76,0.00} {0.84,0.00} {0.92,0.00} {0.92,0.00}
h 0.8 0.66 0.66 0.67 0.67 0.67 0.67
0.62,0.69 0.61,0.71 0.62,0.71 0.63,0.70 0.64,0.71 0.63,0.70
~§0.18, 0.00%» ~§0.18, 0.00%» «Eo 17, 0.00% <§0.17, 0.00% «Eo 16, 0.00% §0.17, 0.00%
Ds 0.8 0.76 0.78 0.80 0.81 0.82 0.82
(0.72, 0.80) (0.74,0.81) (0.75,0.83) (0.78,0.85) (0.79,0.85) (0.78,0.86)
{0.06,0.74} {0.04,0.92} {0.03,1.00} {0.03,0.00} {0.03,0.88} {0.04,0.78}
Di 0.8 0.79 0.80 0.81 0.83 0.83 0.84
50.75, 0.822L 50.75, 0.832L 50.78, 0.84% EO 78, 0.86% EO 80, 0.88% EO 80, 0.88%
0.03,0.98 0.04,0.96 0.03,0.94 0.04,0.00 0.05,0.70 0.06,0.56
o, 0.0050 0.0032 0.0033 0.0036 0.0040 0.0042 0.0043
(0.0023,0.0039)  (0.0025,0.0041)  (0.0027,0.0045)  (0.0029,0.0052)  (0.0029,0.0054)  (0.0030, 0.0057)
{0.36,0.00} {0.36,0.12} {0.31,0.32} {0.24,0.00} {0.22,0.66} {0.20,0.68}
os  0.0050 0.0053 0.0052 0.0051 0.0050 0.0048 0.0047
(0.0040, 0.0067)  (0.0042,0.0068)  (0.0041,0.0062)  (0.0033,0.0063)  (0.0039,0.0059)  (0.0037, 0.0061)
{0.15,0.92} {0.15,0.90} {0.14,0.94} {0.18,0.00} {0.12,0.96} {0.15,0.92}
o; 0.0020 0.0017 0.0016 0.0017 0.0016 0.0016 0.0016
(0.0015,0.0020)  (0.0014,0.0019)  (0.0014,0.0020)  (0.0012,0.0019)  (0.0014,0.0020)  (0.0014, 0.0019)
{0.16,0.50} {0.20,0.20} {0.17,0.44} {0.22,0.00} {0.19,0.32} {0.20,0.28}
o 2.0 2.04 2.00 1.89 1.83 1.72 1.73
51.88, 2.202L 51.72, 2.212L El 67, 2.09% 51.62, 2.09% 51.52, 1.93% 51.52, 1.91%
0.06,0.98 0.07,1.00 0.08,1.00 0.11,0.00 0.16,0.78 0.15,0.78
Oy 0.5 0.35 0.36 0.33 0.31 0.31 0.32
‘ 50.22, 0.54% 50.21, 0.56% EO 14, 0.54% EO.lS, 0.50% 50.19, 0.45% 50.17, 0.47%
0.35,0.80 0.36, 0.84 0.42,0.70 0.43,0.00 0.42,0.66 0.40,0.76
b)) 1.88 2.01 2.11 2.27 2.28 2.28

Table 3: Average(5, 95) percentiles, andNRMSE, CR}. ¥ is the sum of th&WRMSE across the parameters.



E.2 SHORTERZLB DURATIONS The paper focuses on the accuracy of NL-PF and OB-IF in
datasets with either no ZLB events or a single 30 quartertevEhis section shows the results
when the ZLB binds for durations that are shorter than 30tgumrWe show th& RMSE for each
estimated parameter as well as the sum ofNR&ISE to measure overall accurackable 2shows

the results with NL-PF% and OB-IF0%, while table 3focuses on Lin-KF3% and Lin-KF5%.

No Misspecification: DGP and Estimation Use Small-Scale &lod

Ptr  Truth NL-PF-%% OB-IF-0% Lin-KF-5%
0Q 30Q 0Q 30Q 0Q 30Q
©p 100 96.8 109.8 94.3 110.6 103.7 128.5
(81.6,109.9) (89.5,130.3) (81.8,108.3) (95.3,125.1) (92.6,118.4) (111.2,145.3)
£0.09, 0.96Y {0.15,0.907 10.11,0.96} 10.15,0.967 10.09, 0.98Y {0.30,0.46}
h 0.8 0.79 0.79 0.79 0.79 0.80 0.79
0.76,0.82 0.77,0.82 0.75,0.82 0.77,0.82 0.76,0.83 0.76,0.82
fo.oz,o.gﬁ fo.oz,o.gﬁ fo.oz,o.gﬁ fo.oz,o.%% fo.oz,o.%% 50.03,0.92%
Ds 0.8 0.80 0.83 0.81 0.84 0.82 7
0.76,0.83 0.78,0.86 0.76,0.85 0.80,0.87 0.77,0.86 0.83,0.91
50.03,0.9&» 50.04,0 60% 50.04,0.95% Eo 06,0.58%» 50.05,0 90% 50.10,0 10%
pi 0.8 0.82 0.82 0.79 0.79 0.82 0.86
0.79,0.84 0.78,0.85 0.77,0.82 0.74,0.82 0.79,0.84 0.83,0.88
Eo 03, 0.88% §0.03, 0 80%» Eo.oz 0.98% §0.03, 0.90% §0.03, 0.94% 50.08, 0.26%
o, 0.005 ( 0.0037 ' 0.0035 ' 0.0051 ' 0.0052 ' 0.0038 ' 0.0034 )
0.0029,0.0046)  (0.0025,0.0045)  (0.0044,0.0056)  (0.0043,0.0061)  (0.0029,0.0046)  (0.0026,0.0044
{0.27,0.24} {0.33,0.18} {0.08,0.98} {0.11,0.86} {0.26,0.28} {0.33,0.16}
os 0.005 0.0047 0.0043 0.0049 0.0046 0.0047 0.0036
0.0035,0.0058)  (0.0032,0.0058)  (0.0039,0.0060)  (0.0034,0.0057)  (0.0034,0.0059)  (0.0027,0.0046
( {0.19,0.90} ) {0.22,0.72} ) {0.16,0.86} ) {0.17,0.80} ) {0.21,0.90} ) {0.32,0.38} )
o; 0.002 0.0016 0.0014 0.0020 0.0019 0.0016 0.0015
(0.0013,0.0020)  (0.0010,0.0018)  (0.0017,0.0022)  (0.0016,0.0022)  (0.0013,0.0019)  (0.0012,0.0017)
{0.20,0.24} {0.31,0.18} {0.07,0.90} {0.10,0.78} {0.20,0.24} {0.27,0.10}
On 2.0 2.00 2.01 1.95 1.80 1.97 1.62
1.81,2.21 1.82,2.20 1.74,2.14 1.58,2.06 1.76,2.18 1.42,1.86
Eo.o& 0.96% Eo.o& 1.00%» Eo.o& 1.00%» éo.u, 0.76% éo.m, 0.96% 50.20, 0.38%
0.5 0.45 0.48 0.46 0.52 0.46 0.50
% é0.29,0.61% éo.zs,o.m% éo.so,o.as% é0.32,0.73% éo.sl,o.agi 50.34,0.66%
0.22,1.00 0.18,1.00 0.21,1.00 0.23,1.00 0.22,1.00 0.19,1.00
b)) 1.12 1.35 0.78 0.99 1.14 1.82

Table 4: Average(5, 95) percentiles, andNRMSE, CR}. ¥ is the sum of th&WRMSE across the parameters.

E.3 No MISSPECIFICATION Table 4compares the parameter estimates after removing model
misspecification. Since it is numerically very expensivestimate the medium-scale model used
to generate the data with NL-PF, we created new datasetstfreramall-scale model. The sum
of the NRMSE shows about0% of the error is due to model misspecification. For example, in
datasets without any ZLB events, the error with NL-Fk-increases from.12 to 1.90 when mis-
specification is added to the estimated model. Removingpadiication has the largest impact on
the accuracy ofp,, h, and¢, because the estimates no longer have to compensate fockhefla
sticky wages and investment, which creates large diffeagic the model’s sensitivity to shocks.
Notably, the NL-PF% estimate ofp, declines fromi51.1 to 96.8 and the estimate df rises from

0.66 to 0.79 in datasets without ZLB events. TR& rises from neaf to consistently above.9.

10



The other results emphasized in the paper are unchangedshblk standard deviations are
biased downward with NL-PEY% because the filter incorrectly assigns some of the fluctnatio
ME, reducing the estimated variances. When the ZLB bindeerdata, it biases the estimates of
¢, andps upward, though NL-PBY% and OB-IF0% are both far more accurate than Lin-KF.

Inflation Rate Output Growth Gap

Notional Interest Rate

20

| True Simulation - - - - Mean Estimated Simulation|
NL-PF-5% OB-IF-0%

4 — 4 —
6 — L .

0 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18
4 4
-6 e .

0 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
4 4
_6 L L L 1 L L L L _6 1 L L L 1 1 L L L

0 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Figure 2: Recession responses without model misspecificafihe solid line is the true simulation, the dashed line is
the mean estimated simulation, and the shaded area cotita(3s95) percentiles across the datasets. The simulations
are initialized in steady state and followed by four consigeu .5 standard deviation positive risk premium shocks.

Figure 2plots the recession responses in figure 3 without misspatdit The solid line shows

the responses based on the true parameterization of thesrald model, rather than the medium-
scale model that generates our original datasets. The dliisbeshows the mean responses, given
the parameter estimates with our alternative datasetssi€ent with the previous results, the re-
sponses based on the NL-B%-and OB-IF0% parameter estimates are very similar. The key dif-
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ference is that the mean estimated simulations are mucérdtmthe true simulation and ttig, 95)
percentiles almost always encompass the truth. This rekals the muted responses in figure 3
are primarily driven by model misspecification, rather tiveatcuracies in the estimation methods.

E.4 IMPULSE RESPONSES This section shows generalized impulse response funci@@iid-s)
of a productivity growth and monetary policy shock when tberemy is in a severe recession and
the ZLB binds. To compute the GIRFs, we follow Koop et al. (@R9Ve first calculate the mean
of 10,000 simulations, conditional on random shocks in every qudrter, the baseline path). We
then calculate a second mean from another séd 600 simulations, but this time the shock in the
first quarter is replaced with a two standard deviation negatroductivity growth or monetary
policy shock (i.e., the impulse path). Finally, we plot thiéestences between the two mean paths.
The benefit of a GIRF over a more traditional impulse respdunsetion is that it allows us to
calculate the responses in any state of the economy witheufluence of mean reversion. For the
true model, we initialize at the state following four constie 1.5 standard deviation positive risk
premium shocks, consistent with figure 3. We then find a sempiehfour equally sized risk pre-
mium shocks that produce the same notional rate in our esdmaodel as the true model, so the
simulations begin at the same point. The NL-Pk-simulations are shown in the left column and
the OB-IF0% simulations are in the right column. The true simulationtef DGP (solid line) is
compared to the mean estimated simulation of the smalescatlel (dashed line). Th8, 95) per-
centiles account for differences in the simulations actiesgparameter estimates for each dataset.
Figure 3ashows the responses to a productivity growth shock. Quakls the responses of
output growth and inflation are similar across the speciboat Higher productivity growth in-
creases the output growth gap and decreases the inflateolikeas typical supply shock. Since the
Fed faces a tradeoff between stabilizing the inflation artdutlgaps, the notional interest rate re-
sponse depends on the parameterization. The notionaisasewith the DGP, but falls with both of
the estimated models. Quantitatively, there are impod#dfgrences between all of the responses.
Consistent with figure 3, model misspecification leads toedutsponses of the output growth
gap and the inflation rate. There are also differences in tignitudes of the estimated responses,
but most of that is driven by the downward bias in the shochdded deviation with NL-PKBY%.
Figure 3bshows the responses to a monetary policy shock. AlthoughliBebinds in the true
and estimated models, the shock is expansionary becauseeitd the expected nominal interest
rate in future periods. Therefore, the output growth gaptaednflation rate both increase in all
three models. Unlike with the other two shocks, model missjgation has a relatively small effect
on the responses, as tfie 95) percentiles of the estimated responses encompass thespanses
in most periods. There are some differences in the NL5%Fand OB-IF0% responses, but they
are smaller than ifigure 3aand are never large enough to have meaningful policy imjpdins.
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(a) Productivity Growth Shock
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(b) Monetary Policy Shock
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Figure 3: Impulse responses te-& standard deviation shock in a severe recession. The sodiddithe true response,
the dashed line is the mean estimated response, and thelsiradecontains th@, 95) percentiles of the responses.
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Example of Filtered Notional Rate Estimates
T
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Figure 4: Estimates of the notional rate in datasets with quz0ter ZLB event. Rates are net annualized percentages.

E.5 NOTIONAL RATE ESTIMATES Figure 4provides more intuition about what is driving the
relative accuracy of the filtered estimates of the notioatd in figure 1. The top panel plots the
actual notional rate from an example dataset with a 30 quaLtB event, as well as the filtered
estimates from NL-PBY% and OB-IF6%. Over time, the OB-I% estimate increases towards
zero faster than NL-PE%. This may be driven by the lower estimatep{0.77) with OB-1F-0%,
which is slightly below the NL-PFB% estimate and the true value §0). The bottom two panels
plot the error in the average filtered notional rate estisdteing the 30 quarter ZLB event across
the 50 datasets (solid line). The shaded region showstls) percentiles. This suggests the
example dataset in the top panel is fairly representatifae.distribution of errors for OB-1B% is
slightly shifted up from the NL-PFB% error distribution, and increasingly so over time. This may
seem somewhat at odds with the results in figure 1, as OBA4lks even less accurate relative to
NL-PF-5% in the datasets with shorter ZLB events. However the OBYFestimates op; and¢,
have an even larger downward bias in datasets with shortBrdfiration, as shown itable 2

E.6 ADDITIONAL DATASET STATISTICS ZLB events are frequent in the medium-scale model
that generates the datasets, which allows us to find siroaktwith up to 30 consecutive quarters
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6Q 12Q 18Q 24Q 30Q

CDF of ZLB Event Durations 0.678 0.885 0.966 0.992 0.998
Number of Simulations to Reach 50 Datasets 150,300 154,950 256,950 391,950 1,030,300

Table 5: Probability of ZLB event durations in a long simidatof the medium-scale model.

PDF (percent CDF (percent
20 DF (percent) | 100 | (p )
75+
20
50+
10
25
0 : : : 0
0 10 20 30 40 50 0 10 20 30 40 50

Duration in quarters Duration in quarters

Figure 5: Duration of ZLB events in a long simulation of thednan-scale model.

at the ZLB without imposing restrictions on the shocks. Imag simulation of the model, the
unconditional probability of being at the ZLB 4 percent. This is roughly equivalent to the U.S.
experience of 7 years, since our sample is 30 years. MosedtB events in the simulation are
short, with the policy rate rising above zero within one yadess, as shown itable Sandfigure 5
However, long ZLB events are not incredibly uncommon).a5 percent of ZLB events have a du-
ration of at least 30 quarters. When generating our datagetsnpose an additional requirement
that the ZLB event in our sample is unique so it reflects actatd. The number of 120 quarter sim-
ulations required to find0 simulations that meet that criterion is shown in the last odwable 5

E.7 GOVERNMENT SPENDING This section shows how government spending affects our re-

sults. Government spending is a potentially importantuieabecause it adds a shock that directly

enters the aggregate resource constraint. Without govarnspending, any shock in the DGP that

affects the resource constraint is absorbed by consumgtiprice adjustment costs in the small-

scale model, since output and inflation are observed. Withavedge between consumption and

output, it could cause significant bias in the habit persisteand price adjustment cost parameters.
We assume the share of government spending devoted to doliputs

Gi = (1= pg)3° + pggi_1 + 04€94,0 < pg < 1,e4 ~ N(0, 1), (22)

where the steady-state shagg,is set t00.2129 to match the time average from 1988Q1-2017Q4.
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With the addition of government spending, the aggregatauree constraint is given by
e+ = (1—g))yi™. (23)

All other equations in the equilibrium system are unchangé& add government spending to
the medium-scale model that generates our datasets anthallvssale model for estimation. We
estimate the small-scale model wiff{4obs) and withoutq*-3obs) including real per capita con-
sumption growth as an additional observable. In this sespedification, the government spend-
ing shock is less constrained, potentially absorbing thstichent costs left out of the small-scale
model and reducing inaccuracy driven by misspecificatiotheaggregate resource constraint.
The specification without government spending (rfipexcludesg® from the DGP and the esti-
mated model, just like in the main paper. In each case, tleegasameterization is unchanged,
except the shock standard deviations were reduced €r66% to 0.004. This change is neces-
sary because the additional volatility in the model with gmment spending causes the model
to spend too much time at the ZLB and not converge at the pusparameterizationTable 6
shows the parameter estimates using datasets where theigtd8for 30 quarters anible 7is
based on datasets where the ZLB never binds in the data. @B:li§ not used to estimate these
specifications, since it is not possible to have more shdwks dbservables in the inversion filter.
Interestingly, the differences in the parameter estimagtaeenyg®-4obs and ngy are fairly
small, especially in datasets where the ZLB binds for 30tgusir They*-4obs estimates af, and
h are more accurate than the pbestimates, but they are still significantly biased. Furtiee,
the improvement in those estimates is not as significant as$ adturs when we add sticky wages
to the model estimated with OB-I6%. This implies that the presence of government spending
helps increase the volatility of output growth, but not egloto compensate for the lack of sticky
wages, which we see as the most important misspecificativmgrthe bias ing, and h. It
is also important to note that the estimates of the prodiigtgrowth and risk premium shock
standard deviationg( ando,) are biased downward to a greater extent than in the modebutit
government spending. As a consequence, the sum of BidSE with government spending is
higher than without government spending, regardless oéstienation method or the duration of
the ZLB. This result occurs even though ffedobs estimates included an additional observable.
Excluding the additional observablg{3obs) also does not improve the overall accuracy of the
parameter estimates. The productivity growth and risk jpwemshock standard deviations become
more accurate than ng but the estimates af, are largely unchanged and the downward bias
in h becomes even larger. As a result, BMSE of ¢®-3obs is higher than thg°-4obs or no-
g° estimates. Once again, this is consistent with the lackidkysivages as the most important
misspecification, while misspecification in the resourcest@int appears to play a smaller role.
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NL-PF-5% (30Q)

Lin-KF-5% (30Q)

Ptr  Truth nog?* g®-4obs g®-3obs nog* g®-4obs g®-3obs
©p 100 180.8 164.2 183.3 182.8 170.0 188.6
(167.2,193.5) (145.1,188.9) (165.2, 203.5) (168.0,194.5) (150.3, 196.3) (167.6,210.5)
{0.81,0.00} {0.65,0.06} {0.84,0.00} {0.83,0.00} {0.71,0.00} {0.90, 0.00}
h 0.8 0.66 0.71 0.56 0.65 0.71 0.54
0.63,0.71 0.67,0.74 0.47,0.62 0.62,0.70 0.66,0.74 0.43, 0.61
§0.17, 0.00%» Eo 11, 0.00%» é0.31, 0.00%» fo.ls, 0.00%» fo.m, 0.00%» 50.33, 0.00%»
Ps 0.8 0.84 0.86 0.84 0.85 0.87 0.84
(0.81,0.86) (0.84,0.88) (0.80,0.87) (0.82,0.87) (0.85,0.90) 50.81, 0.88)
{0.05,0.48} {0.08,0.10} {0.05,0.62} {0.06,0.36} {0.09,0.12} 0.06,0.58}
pi 0.8 0.81 0.81 0.81 0.83 0.83 0.85
0.78,0.84 0.77,0.84 0.77,0.85 0.80, 0.86 0.80,0.88 0.81,0.89
fo 03,0 94% 50.03, 0.96% 50.03, 0.92% 50.04, 0 80% éo.os, 0.70% 50.07, 0.28%
Pgs 0.8 — 0.89 0.82 — 0.89 0.83
0.85,0.93 0.80,0.84 0.85,0.93 0.82,0.86
Eo.m, 0.28% §0.03, 1.00% Eo.m, 0.20% 50.04, 1.00%
o, 0.004 0.0030 0.0028 0.0034 0.0031 0.0029 0.0036
(0.0023,0.0037)  (0.0019,0.0037)  (0.0026,0.0047)  (0.0024,0.0038)  (0.0021,0.0041)  (0.0025,0.0052)
{0.26,0.40} {0.33,0.20} {0.21,0.94} {0.25,0.40} {0.30,0.28} {0.22,0.88}
os  0.004 0.0031 0.0024 0.0036 0.0029 0.0023 0.0034
(0.0025,0.0039)  (0.0020,0.0030)  (0.0026,0.0049)  (0.0023,0.0036)  (0.0018,0.0029)  (0.0025, 0.0047)
{0.25,0.50} {0.40, 0.04} {0.20, 0.82} {0.30, 0.26} {0.44,0.00} {0.22,0.70}
o;  0.002 0.0015 0.0015 0.0015 0.0014 0.0015 0.0015
(0.0013,0.0018)  (0.0011,0.0018)  (0.0011,0.0017)  (0.0011,0.0016)  (0.0012,0.0017)  (0.0012,0.0017)
{0.24,0.22} {0.26,0.28} {0.29,0.22} {0.33,0.00} {0.26,0.10} {0.27,0.10}
ogs 0.004 — 0.0044 0.0025 — 0.0044 0.0025
‘ (0.0039,0.0049)  (0.0018, 0.0032) (0.0039,0.0049)  (0.0018, 0.0033)
{0.13,0.74} {0.39,0.16} {0.13,0.70} {0.40, 0.20}
On 2.0 2.27 2.09 2.23 2.10 1.73 1.90
2.13,2.47 1.85,2.34 2.00, 2.45 1.91,2.32 1.31,2.04 1.62,2.13
§0.14, 0.64%» Eo.os, 0.90% §0.13, 0.68%» Eo.os, 0.92%» Eo.n, 0.72%» Eo.og, 0.96%»
by 0.5 0.38 0.50 0.47 0.36 A1 0.44
0.26,0.55 0.34,0.63 0.24,0.64 0.22,0.51 0.30, 0.58 0.31,0.64
éo.zg, 0.98%» éo.ls, 0.98%» é0.21, 0.96%» é0.33, 0 94% éo 25,0 98%» 50.23, 0.98%»
> 2.26 2.38 2.70 2.39 2.64 2.83

Table 6: Average(5, 95) percentiles, andNRMSE, CR}. ¥ is the sum of th&WRMSE across the parameters.
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NL-PF5% (0Q)

Lin-KF-5% (0Q)

Ptr  Truth nog?* g®-4obs g®-3obs nog* g®-4obs g®-3obs
©p 100 157.9 128.8 148.8 157.7 128.8 149.2
(130.0,175.8) (109.2, 143.7) (128.8,163.8) (130.1, 175.3) (109.5, 142.8) (129.4, 164.3)
{0.59,0.00} {0.31,0.34} {0.50,0.00} {0.59,0.02} {0.31,0.38} {0.50,0.00}
h 0.8 0.64 0.68 0.57 0.64 0.68 0.57
§0.60, 0.69% §0.65, 0.72% éO'M’ 0.66% éO.GO, 0.69% §0.65, 0.72% 50.48, 0.66%
0.20, 0.00 0.15,0.00 0.30, 0.00 0.20, 0.00 0.15,0.00 0.29, 0.00
Ps 0.8 0.79 0.81 0.78 0.79 0.81 0.78
(0.74,0.82) (0.76,0.85) (0.72,0.83) (0.74,0.83) (0.77,0.85) 50.72, 0.83)
{0.03,0.94} {0.03,0.90} {0.05,0.86} {0.03,0.96} {0.04,0.90} 0.05,0.86}
pi 0.8 0.79 0.78 0.80 0.79 0.78 0.80
0.74,0.82 0.74,0.82 0.76,0.83 0.74,0.82 0.75,0.82 0.76,0.83
50.04, 0 86% 50.04, 0.84% 50.03, 0.98% 50.04, 0 88% éo.o:’,, 0.92% 50.03, 0.98%
s 0.8 — 0.82 0.81 — 0.82 0.80
Ps EM& 0.87% EM& 0.84% Eo.w, 0.86% 50.75, 0.83%
0.05,0.94 0.03, 1.00 0.04,0.94 0.03, 1.00
o, 0.004 0.0029 0.0023 0.0027 0.0029 0.0023 0.0027
(0.0022,0.0037)  (0.0018,0.0029)  (0.0019,0.0036)  (0.0022,0.0037)  (0.0018,0.0029)  (0.0019, 0.0036)
{0.29,0.22} {0.43,0.00} {0.36,0.54} {0.29,0.28} {0.43,0.00} {0.36,0.50}
o, 0.004 0.0032 0.0025 0.0036 0.0032 0.0025 0.0037
(0.0025,0.0038)  (0.0021,0.0030)  (0.0026,0.0049)  (0.0025,0.0039)  (0.0020,0.0030)  (0.0027,0.0049)
{0.23,0.52} {0.38,0.02} {0.19,0.84} {0.23,0.54} {0.38,0.02} {0.19,0.84}
o; 0.002 0.0018 0.0018 0.0017 0.0018 0.0018 0.0017
(0.0015,0.0021)  (0.0015,0.0021)  (0.0014,0.0020)  (0.0015,0.0021)  (0.0015,0.0020)  (0.0014,0.0020)
{0.15,0.60} {0.15,0.60} {0.17,0.48)} {0.15,0.62} {0.15,0.56} {0.16,0.50}
o 0.004 — 0.0041 0.0033 — 0.0041 0.0033
g (0.0037,0.0046)  (0.0025,0.0039) (0.0036,0.0046)  (0.0025, 0.0038)
{0.08,0.84} {0.20,0.52} {0.08,0.84} {0.20,0.56}
On 2.0 2.11 1.92 2.08 2.10 1.92 2.08
1.97,2.24 1.67,2.25 1.87,2.34 1.97,2.24 1.66,2.27 1.86, 2.32
Eo.oz 1.00%» Eo.og, 1.00%» Eo.os, 0.94%» Eo.oz 0.98%» Eo.og, 0.98%» Eo.os, 0.96%»
by 0.5 0.39 .53 .52 0.39 0.53 0.52
0.26,0.53 0.34,0.70 0.30, 0.69 0.27,0.52 0.34,0.70 0.30, 0.68
0.26, 1.00 0.22,0.98 0.23,1.00 0.27,1.00 0.22,0.98 0.23,1.00
b R Xt SN (v S (210 617 S X B X ¥ 11
by 1.87 1.92 2.12 1.86 1.91 2.12

Table 7: Average(5, 95) percentiles, andNRMSE, CR}. ¥ is the sum of th&WRMSE across the parameters.
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