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ABSTRACT

During the Great Recession, central banks lowered tharypte to the zero lower bound
(ZLB), calling into question linear estimation methods.efd are two alternatives: estimate
a nonlinear model that accounts for precautionary saviffgste of the ZLB or a piecewise
linear model that is faster but ignores the precautionavinga effects. This paper compares
their accuracy using artificial datasets. The predictiohthe nonlinear model are typically
more accurate than the piecewise linear model, but therdiftes are usually small. There are
far larger gains in accuracy from estimating a richer, lesspecified piecewise linear model.

Keywords Bayesian Estimation; Projection Methods; Particle Eil@ccBin; Inversion Filter
JEL ClassificationsC11; C32; C51; E43

*Atkinson and Richter, Research Department, Federal Re®amk of Dallas, 2200 N Pearl Street, Dallas, TX
75201 (tyler.atkinson@dal.frb.org; alex.richter@déaldrg); Throckmorton, Department of Economics, William &
Mary, P.O. Box 8795, Williamsburg, VA 23187 (nat@wm.edulk Wank Boragan Aruoba, Alex Chudik, Marc Gian-
noni, Matthias Hartmann, Rob Hicks, Ben Johannsen, Gid?giiceri, Sanjay Singh, Kei-Mu Yi, and an anonymous
referee for suggestions that improved the paper. We alstkt@aris Stackpole and Eric Walter for supporting the
supercomputers at our institutions. This research was atpwith supercomputing resources provided by the Fed-
eral Reserve banks of Kansas City and Dallas, William & Marburn University, the University of Texas at Dallas,
the Texas Advanced Computing Center, and Southern Methddigersity. The views in this paper are those of the
authors and do not necessarily reflect the views of the FEResrve Bank of Dallas or the Federal Reserve System.



1 INTRODUCTION

Using Bayesian methods to estimate linear dynamic stoclgesteral equilibrium (DSGE) models
has become common practice in the literature over the lageads. Many central banks also use
these models for forecasting and counterfactual simulatidhe estimation procedure sequentially
draws parameters from a proposal distribution, solves theéaingiven that draw, and then evalu-
ates the likelihood function. With linearity and normallgtlibuted shocks, the model solves in a
fraction of a second and it is easy to exactly evaluate thadilikod function with a Kalman filte.
The financial crisis and subsequent recession compelleg oeriral banks to take unprece-
dented action to reduce their policy rate to its zero lowemut(ZLB), calling into question linear
estimation methods. The ZLB constraint presents a chal&rgempirical work because it creates
a kink in the central bank’s policy rule. The constraint higags existed, but when policy rates
were well above zero and the likelihood of hitting the coaisirwas negligible, it was reasonable
toignore it. The lengthy period of near zero policy ratesrélie last decade and the increased like-
lihood of future ZLB events due to estimates of a lower ndtati@ has forced researchers to think
more carefully about the ZLB constraint and its implicaida.g., Laubach and Williams, 2016).
There are two promising estimation methods used in theatitee that account for the ZLB
constraint in DSGE models. The first method estimates a fdhjinear model with an occasion-
ally binding ZLB constraint (e.g., Gust et al., 2017; Plagttal., 2018; Richter and Throckmorton,
2016). This method provides the most comprehensive tredtaig¢he ZLB constraint but is nu-
merically intensive. It uses projection methods to solertbnlinear model and a particle filter to
evaluate the likelihood function for each draw from the pdst distribution (henceforth, NL-PE).
The second method estimates a piecewise linear versior oithlinear model (e.g., Guerrieri
and lacoviello, 2017). The model is solved using the OccBailiox developed by Guerrieri and
lacoviello (2015). The likelihood is evaluated using areirsion filter, which solves for the shocks
that minimize the distance between the data and the moddilgions. The benefit of this method
(henceforth, OB-IF) is that it is nearly as fast as estingaanlinear model with a Kalman filter
while still capturing the kink in the decision rules creatgdthe ZLB. However, OB-IF differs
from NL-PF in a potentially important way. Households do actount for the possibility that the
ZLB may bind in the future when it does not currently bind, ehis inconsistent with survey data.

1Schorfheide (2000) and Otrok (2001) were the first to useetimesthods to generate draws from the posterior
distribution of a linear DSGE model. See An and Schorfhe2®®7) and Herbst and Schorfheide (2016) for examples.

2Several papers examine the effects of the ZLB constraintatibratednonlinear model using projection methods
similar to ours (e.g., Aruoba et al., 2018; Fernandezavirde et al., 2015; Gavin et al., 2015; Keen et al., 2017;
Mertens and Ravn, 2014; Nakata, 2017; Nakov, 2008; Ngo, ZRithter and Throckmorton, 2015; Wolman, 2005).

3The inversion filter also removes the interest rate as armedisie and sets the monetary policy shock to zero when
the ZLB binds, whereas the particle filter estimates thoselsh At the ZLB, the interest rate can only identify the
upper bound on policy shocks. Other observables in pria@plld have some additional information, but in practice
there is almost none. Therefore, the particle filter doepretisely estimate these shocks when the ZLB binds.



This paper compares the accuracy of the two methods by gperH true parameterization of
a medium-scale nonlinear model with an occasionally bigdihB constraint, solving the model
with a projection method, and generating a large sample t@@isdés. The datasets either contain
no ZLB events or a single event with various durations to vstded the influence of the ZLB on
our estimates. For each dataset, NL-PF and OB-IF are usesfitoage a small-scale, but nested,
version of the medium-scale model that generates the ddia.lilear model is also estimated
with a Kalman filter (henceforth, Lin-KF), since that was thest common method before the
Great Recession. The small-scale model excludes feattites medium-scale model that others
have shown are empirically important. The difference betwthe two models—referred to as
misspecification—accounts for the practical reality tHatredels are misspecified. It also sheds
light on the merits of estimating a simpler, more misspedifiraodel with NL-PF, versus a richer,
less misspecified, model with OB-IF that is numerically veogtly with fully nonlinear methods.
We find NL-PF and OB-IF produce similar parameter estimabesontrast, the predictions
and forecasting performance of NL-PF are typically moreueaie than OB-IF. For example, the
estimates of the notional interest rate (the rate the ddrdrk would set in the absence of the ZLB
constraint), the expected ZLB duration, the probabilityacf quarter or longer ZLB event, and
forecasts of the policy rate are closer to their actual \&lUde increase in accuracy, however, is
often small because the precautionary savings effectsedftl8 and the effects of other nonlin-
earities are weak in canonical models. The benefits also eathea steep increase in estimation
time. The model takes roughly a week to estimate with NL-PiSuga couple hours with OB-IF.
These results suggest that OB-IF may provide an adequaséitsitds for NL-PF, but there are
two important caveats. One, our analysis focuses exclysirethe ZLB constraint. Other con-
straints could create inaccuracies that provide a strgnggfication for the computational burden
of NL-PF. Two, OB-IF only captures nonlinearities from osicaally binding constraints. OB-IF
could not account for nonlinear features such as stochasttility, non-convex adjustment costs,
endogenous regime-switching, default, Bayesian learrdnd non-Gaussian shock distributions.
Our results will provide a useful benchmark for future wdrkttexamines these nonlinear features.
Model misspecification has a much larger impact on accutaay the estimation method. It
biases many of the parameter estimates and often createfcsigt differences between the pre-
dictions of the estimated models and the data generatingepso(DGP). These results suggest
researchers are better off reducing misspecification bgnashg a richer piecewise linear model
than a simpler but computationally less intensive nonlimeadel when the ZLB binds in the data.
This important finding could open the door to promising newkaan the implications of the ZLB.
Our paper is the first to compare different estimation methbdt account for the ZLB con-
straint. Others compare nonlinear estimation methodsn&ati methods. Fernandez-Villaverde
and Rubio-Ramirez (2005) show that a neoclassical growithetrestimated with NL-PF predicts



moments closer to the true moments than the estimates frarKEiusing two artificial datasets
and actual data. The primary source of nonlinearity in thrdel is high risk aversion. Hirose and
Inoue (2016) generate artificial datasets from a linear ietere the ZLB constraint is imposed
using anticipated monetary policy shocks and then applyKEnto estimate the model without
the constraint. They find the estimated parameters, impakg@nses, and structural shocks be-
come less accurate as the frequency and duration of ZLB ®ustrease in the data. Hirose and
Sunakawa (2015) extend that work by generating data frormnear model and re-examine the
bias. None of these papers introduce misspecification iwhian important aspect of our analysis.
We also build on recent empirical work that analyzes the icagibns of the ZLB constraint
(e.g., Gust et al., 2017; liboshi et al., 2018; Plante e8l18; Richter and Throckmorton, 2016).
These papers use NL-PF to estimate a nonlinear model sitoitaurs using actual data from the
U.S. or Japan that includes the ZLB period. Our contribuisotm examine the accuracy of these
nonlinear estimation methods and show under what conditioey outperform other approaches.
The measurement error (ME) in the observation equation efitter is a key aspect of the
estimation procedure that could potentially affect theuagcy of the parameter estimates. Unlike
the inversion filter, the particle filter requires positiveEMariances to prevent degeneracy—a
situation when the likelihood is inaccurate. The literathias used a wide range of different values,
with limited investigation on how they impact accuracy. Gamet al. (2014) show the downside
of introducing ME is that the posterior distributions of separameters do not contain the truth
in a DSGE model estimated with Lin-KF. Cuba-Borda et al. @0ghow that ME in the particle
filter reduces the accuracy of the likelihood function usaralibrated model with an occasionally
binding borrowing constraint. Our analysis provides a pt&dly important role for ME because
it includes model misspecification. We find larger ME variemamprove the accuracy of some
parameters, but the benefits are more than offset by desrigetse accuracy of other parametérs.
The paper proceeds as followSection 2describes the DGP and construction of our artificial
datasetsSection Joutlines the estimated model and estimation meth8dstion 4shows our pos-
terior estimates and several measures of accuracy for stinfa¢ion methodSection Sconcludes.

2 DATA GENERATING PROCESS

To test the accuracy of recent estimation methods that atéouthe ZLB constraint, we generate
a large number of artificial datasets from a medium-scale Keynesian model with capital and
an occasionally binding ZLB constraint. Our model is the sas the one in Gust et al. (2017),
except it removes government spending, inflation inderatiad the investment efficiency shotk.

4Herbst and Schorfheide (2018) develop a tempered pariigletfiat sequentially reduces the ME variances. They
assess accuracy against the Kalman filter on U.S. data witeaImodel and find it outperforms the untempered filter.
SAppendix E.7 shows how the addition of government spendirigeg DGP and estimated model affects our results.



2.1 HRMS The production sector consists of a continuum of monopcéily competitive inter-
mediate goods firms and a final goods firm. Intermediate firen [0, 1] produces a differentiated
good,y(f), according tay;(f) = (viki_1(f))*(azns(f))1=%, wheren( f) is the labor hired by firm
f andk(f) is the capital rented by firrfi. a; = z,a,_; is productivity and is the capital utilization
rate, which are both common across firms. Deviations fronstbady-state growth rate, follow

Zt:2+0z5z,ta €ZNN(0,]_) (l)

The final goods firm purchases output from each intermediatett produce a final good,
Y = [fol ye(f) 0110 qf1%/ =1 "whered, > 1 is the elasticity of substitution. Dividend max-
imization determines the demand for intermediate géog (f) = (p:(f)/p:) "% y:, wherep, =
[fol pe(f)1~0df]'/(1=%) is the price level. Following Rotemberg (1982), intermégliirms pay a
price adjustment costd;? (f) = v, (pe(f)/(Fpe—1(f))—1)%y: /2, wherep, > 0 scales the cost and
7 is the steady-state gross inflation rate. Given this cost, fichoosesy,(f), k.—1(f), andp;(f)
to maximize the expected discounted present value of fulividends £, >~ , ¢ xdx(f), subject
to its production function and the demand for its productew@y, : = 1, ¢i1+1 = B(Ae/ A1) IS
the pricing kernel between periodandt + 1, ¢, = Hfi;l ¢j—1,5, andd,(f) = pe(f)ye(f)/pe —
wing(f) — r¥uk,_1(f) — adjf (f). In symmetric equilibrium, the optimality conditions rexto

Yy = (Utkt—1>a(atnt>1_a7 (2)
wy = (1 — a)megy /ny, 3)
Tf = amcy,/(viki—1), (4)

(/T — 1) (7 /7) = 1 = 0, + Opymey + Bpp Ey[(Ae/ Mer) (Tean /T — 1) (W41 /T) Y1 /ye),  (B)

wherer; = p;/p:—1 is the gross inflation rate. I, = 0, the real marginal cost of producing a unit
of output (nc;) equalsd, — 1)/6,, which is the inverse of the markup of price over marginat.cos

2.2 HouseHoLDS Each household consists of a unit mass of members who supfayed-
tiated types of laborp(¢), at real wage ratev(¢). A perfectly competitive labor union bundles
the labor types to produce an aggregate labor product; [fol ny (0)Ow=1/0w 40100/ (0=1) "where
0., > 1 is the elasticity of substitution. Dividend maximizatioatdrmines the demand for labor
typel, ny(€) = (wy(£) w;) =% n;, wherew, = [ [ w,(¢)'~%=d¢]'/(=%) is the aggregate real wage.
The households chooge;, n;, by, x4, ki, v }52, t0 maximize expected lifetime utility given by
Eo Y72, B log(er — het—y) — Xfol n()'dl/(1 + n)], whereg is the discount factory deter-
mines steady-state labar/n is the Frisch labor supply elasticityjs consumptiong® is aggregate
consumptioni is the degree of external habit persistersas the real value of a privately-issuéd
period nominal bond is investment, and, is an expectation operator conditional on information



available in period). Following Chugh (2006), the nominal wage rate for each dappe is sub-
ject to an adjustment cosid;j” (£) = @, (w] (£) — 1)%y,/2, wherew! (¢) = maw(0)/(Tzwi_1(€)) is
nominal wage growth relative to steady-state. The costibifing the capital shocky, is given by

up = 7 (exp(o, (v; — 1)) = 1) /0y, (6)
whereo, > 0 scales the cost. Given the two costs, the household’s bedgstraint is given by
Ct A o+ by (8430) + uikor + [, adj(O)dl = [ w,()ny(O)dl + rFvgke—y + b1 /7 + db,

wherei is the gross nominal interest raié, is the capital rental rate, antis a real dividend from
ownership of intermediate firms. The nominal bohds subject to a risk premium, that follows

st = (1= ps)S+ psSi—1 + 0ses1, 0 < ps < 1, €5 ~N(0, 1), (7

wheres is the steady-state value. An increase;ibboosts saving, which lowers periediemand.
Households also face an investment adjustment cost, savhaf Imotion for capital is given by

ki =18k +x,(1—v(x) —1)%/2), 0<§ <1, 8)

wherez{ = z;/(zZx,_1) is investment growth relative to its steady-state anel 0 scales the cost.
The first order conditions to each household’s constraimgithization problem are given by

ry = exp(oy, (v — 1)), )

At = ¢ — hey 4, (10)

w] = xni\, (11)

1= BE[(Ae/ A1) (seie/Ti1)], (12)

@ = BE((A\e/Aex1) (M1 V1 — wegr + (1= 0)qer)], (13)

=gl —v(z] - 1)2/2 —v(z] — Dzf] + 5V2Et[()\t/)\t+1)Qt+1(x?+1)2(1'?+1 —1)], (14)
Pu(w] — Dwf = [(1 — Oy)w; + ewwtf]”t/yt + BSDwEt[()\t/)\tJrl)(wtgﬂ - 1)wtg—|—1yt+l/yt]a (15)

wherel/ ) is the marginal utility of consumption,is Tobin’s g, andy/ is the flexible wage rate.

Monetary Policy The central bank sets the gross nominal interest rasecording to

i = max{1,1i}'}, (16)
it = (i) (@m /7) " (g [ (5 2) %) 7 exploigin), 0 < pi < 1, & ~N(0,1),  (17)

wherey9?% is real GDP (i.e., output;, minus the resources lost due to adjustment cegig,and



adj™, and utilization costs),” is the gross notional interest rateandt are the target values of
the inflation and nominal interest rates, afydand¢, are the responses to the inflation and output
growth gaps. A more negative net notional rate indicatestiigacentral bank is more constrained.

Competitive Equilibrium The aggregate resource constraint and real GDP definiteogiaen by

¢+ 1 =y ¥, (18)
Yy =1 = p(m /T = 1)*/2 = pu(w! —1)*/2]y; — wkir. (19)

The model does not have a steady-state due to the unit roactdlugtivity,a,. Therefore, variables
with a trend are defined in terms of productivity (i.8;,, = z;/a,). The detrended equilibrium
system is provided in Appendix A. A competitive equilibrizonsists of sequences of quanti-
ties, {G, i, 577, 29 yd g, ko, T 152, Prices, {iy, 0, @f iy, i, wy, Mgy Upy wg, g, F, me )22, and
exogenous variablegs;, z:}:°,, that satisfy the detrended equilibrium system, given ttitai
conditions {¢_4,4" |, k_1,7_1,_1, S0, 20, ei0}, and three sequences of shocks,;, €5+, )72, .

Subjective Discount Factor Ié; 0.9949 Rotemberg Price Adjustment Cost ¢, 100
Frisch Labor Supply Elasticity 1/7 3 Rotemberg Wage Adjustment Cost ¢, 100
Price Elasticity of Substitution 6, 6 Capital Utilization Curvature o 5
Wage Elasticity of Substitution 6, 6 Inflation Gap Response O 2
Steady-State Labor Hours n 0.3333 Output Growth Gap Response Dy 0.5
Steady-State Risk Premium 5 1.0058 Habit Persistence h 0.8
Steady-State Growth Rate z 1.0034 Risk Premium Persistence Ps 0.8
Steady-State Inflation Rate T 1.0053 Notional Rate Persistence Pi 0.8
Capital Share of Income e 0.35 Productivity Growth Shock SD o 0.005
Capital Depreciation Rate 0 0.025 Risk Premium Shock SD Os 0.005
Investment Adjustment Cost v 4 Notional Interest Rate Shock SD o; 0.002

Table 1: Parameter values for the data generating process.

2.3 FARAMETER VALUES Table 1shows the model parameters for the DGP. The parameters
were chosen so the DGP is characteristic of recent U.S. ddta.steady-state growth rate)(
inflation rate ), risk-premium §), and capital share of incoma) are equal to the time averages
of per capita real GDP growth, the percent change in the GO#idinprice deflator, the Baa
corporate bond yield relative to the yield on the 10-Yeara$tey rate, and the Fernald (2012)
utilization-adjusted quarterly-TFP estimates of the taghare of income from 1988Q1-2017Q4.
The subjective discount facto?, is set t00.9949, which is the time average of the values im-
plied by the steady-state Euler equation and the federadlsfuate. The corresponding annualized
steady-state nominal interest ratei8%, which is consistent with the sample average and current
long-run estimates of the federal funds rate. The leisugéepence parametey, is set so steady-
state labor equal$/3 of the available time. The capital depreciation rate is aét®25. Both



values are ubiquitous in the literature. The elasticitiesubstitution between intermediate goods
and labor types, andd,,, are set t@, which correspond to 20% average markup in each sector
and match the values used in Gust et al. (2017). The Frisstiatg of labor supply] /7, is set ta3
to match the macro estimate in Peterman (2016). The investa@istment cost parameter,and
capital utilization curvatures,,, are consistent with the estimates in Gust et al. (2017). pFice
and wage adjustment cost parametersandy,,, are both set ta00, which correspond to Phillips
curve slopes 06.050 and0.027. Estimates for the monetary responses to the inflation atglibu
growth gaps¢, and¢, vary in the literature, ranging from5-2.5 and0-1 (Aruoba et al., 2018;
Gust et al., 2017). In this mode},, = 2.0 and¢, = 0.5, which are in the middle of those ranges.
The persistence parameters and shock standard deviateosstdo values that are in line with
the estimates from Aruoba et al. (2018) and Gust et al. (2008 most consequential parameters
are the risk premium persistence and shock standard daviagicause they have the largest impact
on the expected frequency and duration of ZLB events. Whéereof those parameters increase,
households place more weight on outcomes where the cerandl tannot respond to adverse
shocks by lowering the nominal interest rate, which inoesabe downward bias from the ZLB.

2.4 SOLUTION AND SIMULATION METHODS The nonlinear model is solved with the policy
function iteration algorithm described in Richter et al012), which is based on the theoretical
work on monotone operators in Coleman (1991). We discrétieendogenous state variables and
approximate the exogenous statgsz;, ande; ; using theN-state Markov chain in Rouwenhorst
(1995). The Rouwenhorst method is attractive becauseytregjuires us to interpolate along the
dimensions of the endogenous state variables, which mhkesotution more accurate and faster
than quadrature methods. To obtain initial conjecturesifemonlinear policy functions, we solve
the level-linear analogue of our nonlinear model with SB1{2002) gensys algorithm. The algo-
rithm minimizes the Euler equation errors on every node @éstlate space and computes the max-
imum distance between the updated policy functions andritialiconjectures. It then replaces
the initial conjectures with the updated policy functionsl &erates until the maximum distance is
below the tolerance level. See Appendix B for a more detaltstription of the solution method.
Data for output growth, the inflation rate, and the nomintdriest rate is generated by simulat-
ing the model using the nonlinear policy functions, so theesables are given by, = [v7, 7, 7).
Each simulation is initialized with a draw from the ergodistdbution and contain$20 quarters,
similar to what is often used when estimating models witlnalaiata. Draws from the DGP either
contain no ZLB events or a single ZLB event thabs, 10%, 15%, 20%, and25% of the sample.
The sample i9420 quarters, so the ZLB events are eitléer 2, 18, 24, or 30 quarters long. The
longest events reflect the recent experiences of some agtv@wonomies, such as the U.S. and
Japan. There arg datasets for each ZLB duration. Appendix E.6 provides muiimation.



3 ESTIMATION METHODS

The medium-scale model is costly to estimate with globalhmés, which causes researchers to
work with smaller models. To account for this reality, we glate data from the fully nonlinear
model and test the accuracy of different estimation metloods small-scale nonlinear model that
does not include capital or sticky wages. Therefore, thiemeséd model contains misspecifica-
tion. The medium-scale model that generates our data ceafp the small-scale model when
a = ¢, = 0andd,, — oo. The equilibrium system includes)( (5), (7), (10), (12), (16), (17), and

Ye = gy, (20)

Wy = megyy /Ny, (21)

wy = xn A, (22)

e =yi", (23)

i = [1 = pp(m/7 = 1) /2y (24)

Once again, the trend in productivity is removed and thestieled equilibrium system is shown in
Appendix A. The competitive equilibrium includes sequesstquantities{é, i, 57, y?, n 2,
prices, {1y, ir, i, 7, A, me }5°,, and exogenous variablegs;, z }5°,, that satisfy the detrended
system, given the initial condition§¢_,, " ,, so, 20, €:0}, @nd shock sequences,. ;, s, i1 152 -
The small-scale model is estimated with Bayesian methodse#&ch dataset, parameters are
drawn from a proposal distribution, the model is solved dtmgial on the draw, and a filter is
applied to evaluate the likelihood function within a randemlk Metropolis-Hastings algorithm.
This method is used to examine the accuracy of two estimatiethods that account for the ZLB.
The first method estimates the fully nonlinear model with digle filter (NL-PF). The model
is solved with the same algorithm used to generate our datagéne filter applies Algorithm
14 in Herbst and Schorfheide (2016) by adapting the basitsbrap particle filter described in
Fernandez-Villaverde and Rubio-Ramirez (2007) to idelthe information contained in the cur-
rent observation. This allows the model to better matcreexéroutliers in the data. NL-PF is well-
equipped to handle the nonlinearities in the data, but ilsis the most computationally intensive.
NL-PF requires solving the fully nonlinear model and perforg a large number of simulations to
evaluate the likelihood function for each draw in the randeatk Metropolis-Hastings algorithm.
Appendix C provides a more detailed description of the eaiim algorithm and the particle filter.
The second method estimates a piecewise linear versiom ofdhlinear model with an inver-
sion filter. The model is solved using the OccBin toolbox deped by Guerrieri and lacoviello
(2015). The algorithm separates the model into two reginesne regime, the ZLB constraint
is slack, and the decision rules from the unconstraine@tinedel are used. In the other regime,



the ZLB binds and backwards induction within a guess andwerethod solves for the decision
rules. For example, if the ZLB binds in the current periodjrahal conjecture is made for how
many quarters the nominal interest rate will remain at th& Zgtarting far enough in the future,
the algorithm uses the decision rules for when the ZLB doé$®imal and iterates backward to the
current period. The algorithm switches to the decisiongtite the ZLB regime when the simu-
lated nominal interest rate indicates that the ZLB bindse $imulation implies a new guess for
the ZLB duration. The algorithm iterates until the implied&duration equals the previous guess.
The advantage of using the piecewise linear model is thafves very quickly. On average,
the nonlinear model takels6 seconds to solve (parallelized in Fortran with 16 coresknehs the
piecewise linear model takes a fraction of a second. Furtbes, the nonlinear solution time ex-
ponentially increases with the size of the model, whereasitbdel has little effect on the solution
time in the piecewise linear model. However, it is numehctedo costly to apply a particle filter.
For each particle, the OccBin solution requires a long ehaigulation to return to the regime
where the ZLB does not bind, whereas only a 1-period updateasled with the nonlinear solu-
tion. To speed up the filter, Guerrieri and lacoviello (20fbllow Fair and Taylor (1983) and use
an inversion filter that requires only one simulation. Theension filter solves for the shocks that
minimize the distance between the observables and theagnivmodel predictions each period.
The piecewise linear model estimated with the inversioarfl©OB-1F) makes one potentially
important simplifying assumption. Households do not aotar the possibility that the ZLB may
bind in the future when it does not currently bind. That mdamsseholds ignore the effects of the
ZLB in states of the economy where it is likely to bind in theanéuture because the algorithm
uses the unconstrained linear decision rules. The queistimhether this simplification creates
large enough differences between the two methods to jusiEigher estimation time of NL-PF.
As a benchmark, we estimate the linear analogue of the remlimodel using Sims’s (2002)
gensys algorithm to solve the model and a Kalman filter touatalthe likelihood function (Lin-
KF). Unlike the other two methods, this method ignores th® Zbnstraint, but it is much easier
to implement and was the most common method used in thetliterbefore the Great Recession.
For each estimation method, the observation equation endwyx; = Hs; + &, wheres; is
a vector of variablest is an observable selection matrix, aphth a vector of measurement errors
(MEs). The inversion filter solves for the shocks that mirenihe distance between the observ-
ables x;, and their model predictiong{s;, so there is no ME up to a numerical tolerance. With a
Kalman filter or particle filter¢ ~ N(0, R), whereR is a diagonal matrix of ME variancéslt is

Slreland (2004) allows for correlated MEs, but he finds a raaimess cycle model’s out-of-sample forecasts
improve when the ME covariance matrix is diagonal. Guei@uintana (2010) finds that introducingd. MEs and
fixing the variances ta0% or 20% of the standard deviation of the data improves the empificahd forecasting
properties of a New Keynesian model. Fernandez-Villagendd Rubio-Ramirez (2007) estimate the ME variances,
but Doh (2011) argues that approach can lead to complicalienause the ME variances are similar to bandwidths in
nonparameteric estimation. Given those findings, we usagodal ME covariance matrix and fix the ME variances.
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possible to set the ME variances to zero with the Kalman fi#iece the number of observables is
equal to the number of shocks. The patrticle filter, howewesgs requires positive ME variances
to avoid degeneracy. Unfortunately, there is no consenst®w to set these values, despite their
potentially large effect. We consider three values for the Wriances2%, 5%, and10% of the
variance in the data. These values encompass the wide réugkies used in the literature.

Parameter Dist. Mean (SD) Mean (SD) Paemet Dist. Mean (SD)
©p Norm 100 0.8 o, IGam 0.005
(25) (0.1) (0.005)
O Norm 2.0 0.8 O IGam 0.005
(0.25) (0.1) (0.005)
by Norm 0.5 0.8 o; IGam 0.002
(0.25) (0.1) (0.002)

Table 2: Prior distributions, means, and standard deviatid the estimated parameters.

Table 2displays information about the prior distributions of thetimated parameters. All
other parameter values are fixed at their true values. Tloe reans are set to the true parameter
values to isolate the influence of other aspects of the esimprocedure, such as the solution
method and filter. Different prior means would most likelyeat the accuracy of the estimation
and contaminate our results. The prior standard devigtiwhieh are consistent with the values in
the literature, are relatively diffuse to give the algamitflexibility to search the parameter space.

The estimation procedure has three stages. First, it usesda search to create an initial
variance-covariance matrix for the estimated paramefBng covariance matrix is based on the
parameters corresponding to th@h percentile of the likelihoods from,000 draws. Second, it
performs an initial run of the Metropolis-Hastings algbnit with 25,000 draws from the posterior
distribution. The firs6,000 draws are burned off and the remaining draws are used to @ fioat
variance-covariance matrix from the mode search. Thilghriducts a final run of the Metropolis-
Hastings algorithm witt50,000 draws. Our results are based on the mean draw from each datase

The algorithm is programmed in Fortran and the datasetsuararparallel across several su-
percomputers. Each dataset uses one core with OB-IF anHEimshereas NL-PF uses cores
because the solution is parallelized. For example, a sapgrater with80 cores can simultane-
ously run80 datasets with OB-IF but only datasets with NL-PF. To increase the accuracy of the
particle filter, the likelihood function is evaluated on kamre. Since NL-PF usel$ cores, we
obtain16 likelihoods and determine whether to accept a draw baseldeomédian likelihood. This
key step reduces the variance of the likelihoods from sefedtsf The filter use4$0,000 particles.

’Some papers set the MiEandard deviationto 20% or 25% of the sample standard deviations, which is equivalent
to setting the MEvariancesto 4% or 6.25% of the sample variances (e.g., An and Schorfheide, 2007; RB@hl;
Herbst and Schorfheide, 2016; van Binsbergen et al., 2@itAger work directly sets the ME varianceslt@% or 25%
of the sample variances (e.g., Bocola, 2016; Gust et al.7;2ante et al., 2018; Richter and Throckmorton, 2016).
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NL-PF (16 Cores) OB-IF (1 Core) Lin-KF (1 Core)

0Q 30Q 0Q 30Q 0Q 30Q
Seconds per draw 6.7 8.4 0.035 0.096 0.002 0.002
(6.1,7.9) (7.5,9.5) (0.031,0.040)  (0.051,0.135)  (0.002,0.004)  (0.001,0.003)
Hours per dataset 148.8 186.4 0.781 2.137 0.052 0.049
(134.9,176.5)  (167.6,210.7)  (0.689,0.889)  (1.133,3.000)  (0.044,0.089)  (0.022,0.067)

Table 3: Average an(b, 95) percentiles of the estimation times by method and ZLB darsiti the data.

Table 3shows the computing times for each estimation method. Téieréiw reports the aver-
age and 5, 95) percentiles of the combined solution and filter times acthe$0 posterior mean
estimates. These draws are independent and represefatitreer draws. The second row shows
hours per dataset, which are extrapolated by multiplyirepsds per draw bg0,000 draws and
dividing by 3,600 seconds per hour. Each row provides the times for NL-PF, BB#d Lin-KF in
datasets where the ZLB never binds and datasets with oneé8@qéLB event. NL-PF is run on
16 cores and the other methods use a single core. The estimiates depend on the hardware, but
there are two interesting takeaways. One, OB-IF is sligsitlyer than Lin-KF, but it only takes a
few hours to run on a single core. Two, NL-PF requires sigaifity more time than OB-IF, but it
ran in about a week with6 cores, so it is possible to estimate the nonlinear model corkstation.

4 POSTERIORESTIMATES AND ACCURACY

The section begins by showing the accuracy of the param&tierates for each estimation method.
It then compares the filtered estimates of the notional@steate, expected frequency and duration
of the ZLB, responses to a severe recession, and the foregastformance across the methods.

4.1 RRAMETER ESTIMATES We measure parameter accuracy by calculating the norrdalize
root-mean square-erroNRMSE) for each estimated parameter. For paramgi@nd estimation
methodh, the error is the difference between the parameter estifortiataset:, 6, , and the
true parameteéj. Therefore, th&NRMSE for parametey and estimation metholdis given by

NRMSE! = Gi\/ S O — 0%,

where N is the number of datasets. TR&ISE is normalized by, to remove differences in the
scales of the parameters and measure the total error. Weatgaute the coverage ratio given by

Jj_ 1 N 5% n 195%
CRy, = ¥ Xrm1 H(ej,ff,k <b; < 9j,h,3s)’

wherel is an indicator function ané*” denodes the(th percentile of the posterior distribution.
This statistic shows how likely it is for the posterior dibtrtion to contain the true parameter value.
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Ptr  Truth NL-PF-5% OB-IF-0% Lin-KF-5%

0Q 30Q 0Q 30Q 0Q 30Q
©p 100 151.1 188.4 142.6 183.4 151.4 191.6
(134.2,165.8) (174.7,202.7) (121.1,157.3) (169.2, 198.5) (134.0, 165.7) (175.3,204.1)
{0.52,0.02} {0.89,0.00} {0.44,0.08} {0.84,0.00} {0.52,0.00} {0.92,0.00}
h 0.8 0.66 0.68 0.64 0.63 0.66 0.67
(0.62,0.70) (0.64,0.71) (0.61,0.67) (0.60, 0.67) (0.62,0.69) 50.63, 0.70)
{0.18,0.00} {0.16,0.00} {0.20,0.00} {0.21,0.00} {0.18,0.00} 0.17,0.00}
Ds 0.8 0.76 0.81 0.76 0.82 0.76 0.82
0.72,0.80 0.78,0.84 0.73,0.81 0.79,0.86 0.72,0.80 0.78,0.86
fo 06,0 70% fo 03,0 90% fo 05,0 82% fo 04,0 78% fo.oe, 0 74% 50.04, 0.78%
Di 0.8 0.79 0.80 0.76 0.77 0.79 0.84
EO 75,0 82% 50.75, 0 84% 50.71, 0.79% 50.73, 0.81% 50.75, 0.82% 50.80, 0.88%
0.03,0.96 0.03,0.96 0.06, 0.52 0.05,0.66 0.03,0.98 0.06, 0.56
o, 0.005 0.0032 0.0040 0.0051 0.0059 0.0032 0.0043
(0.0023,0.0039)  (0.0030,0.0052)  (0.0044, 0.0058)  (0.0050,0.0069)  (0.0023,0.0039)  (0.0030, 0.0057)
{0.37,0.00} {0.23,0.58} {0.09,0.92} {0.22,0.30} {0.36,0.00} {0.20,0.68}
os 0.005 0.0052 0.0050 0.0051 0.0046 0.0053 0.0047
(0.0040, 0.0066)  (0.0039, 0.0062)  (0.0042,0.0063)  (0.0036,0.0056)  (0.0040,0.0067)  (0.0037, 0.0061)
{0.15,0.92} {0.13,0.96} {0.13,0.92} {0.15,0.82} {0.15,0.92} {0.15,0.92}
o;  0.002 0.0017 0.0015 0.0020 0.0020 0.0017 0.0016
(0.0014,0.0020)  (0.0013,0.0019)  (0.0018,0.0023)  (0.0019,0.0024)  (0.0015,0.0020)  (0.0014,0.0019)
{0.17,0.48} {0.24,0.20} {0.08,0.90} {0.09,0.90} {0.16,0.50} {0.20,0.28}
On 2.0 2.04 2.13 2.01 1.96 2.04 1.73
51.88, 2.193L 51.94, 2.31%L 51.84, 2.16% 51.77, 2.14%L 51.88, 2.20%L 51.52, 1.91%L
0.06, 0.98 0.09,0.92 0.06, 0.98 0.06, 0.98 0.06, 0.98 0.15,0.78
Dy 0.5 0.35 42 .32 . .35 .32
: §0.21, 0.54% §0.27, 0.62% §0.17, 0.48% §0.27, 0.61% §0.22, 0.54% 50.17, 0.47%
0.36, 0.80 0.28,0.98 0.41,0.68 0.25,0.98 0.35,0.80 0.40,0.76
b)) 1.90 2.08 1.53 1.91 1.88 2.28

Table 4: Average(5, 95) percentiles, andNRMSE, CR}. ¥ is the sum of th&WRMSE across the parameters.

Table 4shows the parameter estimates by specification (first cohmader) and the duration
of the ZLB (second column header). The percentage appeondsath specification header corre-
sponds to the size of the ME variances. Each cell includeatheage (first row),5, 95) percentiles
(second row)NRMSE (third row, first value), and the coverage ratio (third roegend value§.

Across all specifications, the Rotemberg price adjustmesit garametery,) has the highest
NRMSE and it becomes less accurate when the ZLB binds in the dataufWward bias is driven by
misspecification, since the small-scale model used fomesiton does not include sticky-wages. In
the small-scale model, the response of marginal costs ttksh® much larger than in the medium-
scale model, so the estimatesf are higher than the true value to flatten the Phillips curve.
Another inaccuracy is a downward bias in the estimates oit Ipglosistence /(). The response
of output growth to shocks is too small due to the lack of itmesnt in the small-scale model.
Lowering h increases the response to shocks, although at the expelweecofpersistence. Risk
premium persistencep() and the monetary response to the output growth ggpdlso have a
downward bias in the datasets without a ZLB event, buttRes much higher than the near-zero

8For conciseness, the focus is on datasets without a ZLB ewehthose with a 30 quarter event, but the estimates
for the datasets with intermediate ZLB durations, as wethad_in-KF-0% estimates, are provided in Appendix E.2.
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values forp, andh. Also, the bias op, and¢, decreases using datasets with a 30 quarter event.
The NL-PF5% estimates of the productivity growth and monetary policyahstandard devi-
ations ¢, ando;) are biased downward, while the OB-Bs estimates are roughly consistent with
their true values. In the datasets without a ZLB event, L+, produces identical estimates
to NL-PF5%, suggesting the bias is due to the positive ME variancesarfitter. The impor-
tance of the ME variances is likely driven by the filter asierplarge shocks to ME rather than the
structural shocks, reducing their estimated volatilitpwver, in datasets with a 30 quarter event,
NL-PF-5% is more likely to contain the true risk premium parametersahdo,) than OB-1F0%.
While the average estimates are similar, ¢He is 0.90 for p, with NL-PF-5%, compared td.78
with OB-IF-0%. Foro, theCRs are).96 with NL-PF-5% and0.82 with OB-IF-0%. This is notable
because these two parameters have the largest effect aetfuehcy and duration of ZLB events.
The bottom row otable 4shows the sum of thERMSE across the parameters. These values
provide an aggregate measure of parameter accuracy. lmtheeds that are not influenced by
the ZLB, OB-IF0% is more accurate than NL-P¥4. The results for Lin-KF5% show the lower
accuracy of NL-PF% is driven by positive ME variances and that the ZLB is the dmiportant
nonlinearity in the model. When the ZLB binds, it reduces dloeuracy of every specification,
largely due to a single parameter,. Long ZLB events have the smallest effect on the accuracy
of NL-PF-5%. Datasets with a 30 quarter ZLB event reduce accurady. Ii/relative to datasets
without a ZLB event. For comparison, the accuracy decrdagess8 with OB-1F-0% and by0.30
with Lin-KF-0%. However, NL-PF5% is less accurate than OB-IF4 due to the positive ME
variances. In other words, NL-PF4 is the best equipped to handle ZLB events in the data, but the
loss in accuracy from the positive ME variances in the plarfiter may outweigh those benefits.

Misspecification The absence of sticky wages and other frictions from thegkatarating process
are important drivers of the parameter estimates in thelsoale model. Here we explore the
effect of misspecification on only the OB-IF estimates siadeing sticky wages substantially
increases the computational cost of NL-PF. The first two roolsi of table Srepeat the OB-IF-
0% estimates of the small-scale model, while the middle cokisimow the effect of reducing
misspecification on the OB-16% estimates by including sticky wagésThe right two columns
show the OB-IF% estimates using the medium-scale model that generatesatagaliminating
all misspecification except nonlinearities not capturedhsy OccBin solution. For the last two
cases, we fix the parameters that are not estimated in thésraté model to their true valués.

In datasets with a 30 quarter ZLB event, adding sticky wagdaces the sum of tiéRMSE
from 1.91 to 1.59. That is a clear improvement over NL-P&% and is driven by more accurate

9The equilibrium system is the same as the small-scale meregpt (43) and (44) are replaced with (28), (32),
(40), and a real GDP definition that accounts for sticky wages 7" = [1— o, (/7 —1)2 /2 — pu(wf —1)2/2)7).
OAppendix E.1 further explores the estimated bias by repeindjtable 4with o, andh fixed at their true values.
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Ptr  Truth OB-IF-0% OB-I1F-0%-Sticky Wages OB-IF-%-DGP

0Q 30Q 0Q 30Q 0Q 30Q
©p 100 142.6 183.4 100.1 129.8 101.4 128.4
(121.1,157.3) (169.2, 198.5) (76.9,119.6) (105.5, 152.3) (80.1,120.7) (109.0, 148.1)
{0.44,0.08} {0.84,0.00} {0.13,1.00¥ {0.33,0.58} {0.12,0.98Y {0.31,0.46}
h 0.8 0.64 0.63 0.82 0.80 0.81 0.77
(0.61,0.67) (0.60, 0.67) (0.78,0.86) (0.77,0.85) (0.75,0.85) 50.72, 0.84)
{0.20,0.00} {0.21,0.00} {0.04,0.82} {0.03,0.88} {0.04,1.00} 0.06,0.78}
Ds 0.8 0.76 0.82 0.82 0.84 0.80 0.82
éo 73,0 81%L éo 79,0 86%L éo 76, 0.86%L éo 80, 0.88%L éo 76,0 85% EO 79,0 86%L
0.05,0.82 0.04,0.78 0.04,0.90 0.06, 0.58 0.03,0.96 0.04,0.80
i 0.8 0.76 0.77 0.80 0.80 0.79 0.79
r EO 71, 0.79% EO 73, 0.81% 50.77, 0.83% 50.77, 0.84% 50.75, 0.82% 50.75, 0.83%
0.06, 0.52 0.05,0.66 0.02,0.98 0.03,0.92 0.03,0.98 0.03,0.92
o, 0.005 0.0051 0.0059 0.0038 0.0047 0.0047 0.0055
(0.0044, 0.0058)  (0.0050,0.0069)  (0.0031,0.0044)  (0.0039,0.0055)  (0.0039,0.0054)  (0.0047, 0.0066)
{0.09,0.92} {0.22,0.30} {0.24,0.16} {0.12,0.72} {0.11,0.78} {0.15,0.70}
os 0.005 0.0051 0.0046 0.0085 0.0074 0.0060 0.0051
(0.0042, 0.0063)  (0.0036,0.0056)  (0.0056,0.0134)  (0.0050,0.0107)  (0.0043,0.0084)  (0.0039, 0.0068)
{0.13,0.92} {0.15,0.82} {0.81,0.44} {0.60, 0.58} {0.30,0.88} {0.19,0.92}
o; 0.002 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020
(0.0018,0.0023)  (0.0019,0.0024)  (0.0018,0.0022)  (0.0018,0.0023)  (0.0018,0.0022)  (0.0018, 0.0024)
{0.08,0.90} {0.09,0.90} {0.08,0.84} {0.08,0.92} {0.08,0.92} {0.09,0.88}
- 2.0 . 1.96 1.91 1.81 1.92 1.81
¢ é1.847 2.163l 51.77, 2.143l 51.74, 2.043l é1.63, 1.99%l 51.72, 2.082l 51.62, 2.03%l
0.06, 0.98 0.06, 0.98 0.07,1.00 0.11,0.72 0.06, 1.00 0.11,0.70
Oy 0.5 .32 0.44 0.40 .50 0.41 0.50
‘ Eo.n, 0.48% §0.27, 0.61% é0.24, 0.58% é0.33, 0.73% é0.24, 0.57% 50.32, 0.74%
0.41,0.68 0.25,0.98 0.28,0.96 0.23,0.98 0.26,0.96 0.24,0.96
b)) 1.53 1.91 1.71 1.59 1.03 1.23

Table 5: Average(5, 95) percentiles, andNRMSE, CR}. ¥ is the sum of th&WRMSE across the parameters.

estimates ofp, andh that dominate the lower accuracy ®f. TheCR for ¢, andh also signifi-
cantly increases. This is consistent with the claim thatdilas ofy, andh in table 4is primarily
due to the lack of sticky wages, which destabilizes marginats and inflation. The amplification
of shocks still remains too low, now for both inflation and mutt which leads to an upward bias
in o, rather than a downward bias in TheNRMSE for o, is much higher and th€R declines.
Making the estimated model consistent with the DGP imprdkiegparameter estimates even
further. The sum of th&/RMSE declines froml.59 to 1.23 when the ZLB binds for 30 quarters.
The primary reason is becausgis closer to its true value. THERMSE in o, is significantly
lower and theCR is much higher. Also, all of the true parameter values ar@mpassed by
the (5, 95) percentiles of the estimates, except the estimatg,dias a large upward bias in the
30 quarter datasets. This result indicates that the bigs of either driven by nonlinearities not
captured by the OccBin solution or the fact that datasets loitg ZLB events are fairly extreme
realizations of the DGP (i.e., sample selection bta)verall, our results suggest it is more bene-
ficial to reduce misspecification and estimate a richer metel OB-IF than a smaller model with

Appendix E.3 shows the parameter estimates when the soad+sodel is used to generate the data and estimate.
The NL-PF5% and OB-IF§% estimates ofy,, are both close ta10 in datasets with 30 quarter ZLB events. The up-
ward bias suggests sample selection bias also plays antempoule in the medium-scale model when the ZLB binds.
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NL-PF. Nonlinear methods more accurately capture the dyesaaf the ZLB, but computational
limitations often require excluding important featureshod model, like sticky wages and capital.

Ptr  Truth NL-PF-2% NL-PF-5% NL-PF-10%
0Q 30Q 0Q 30Q 0Q 30Q
©p 100 150.2 192.0 151.1 188.4 149.5 182.7
(133.5,165.3) (176.5,207.1) (134.2,165.8) (174.7,202.7) (132.6, 163.8) (168.6, 197.3)
{0.51,0.02} {0.93,0.00} {0.52,0.02} {0.89,0.00} {0.50,0.02} {0.83,0.02}
h 0.8 0.66 0.67 0.66 0.68 0.66 0.68
§0.62, 0.69% 30.64, 0.71% §0.62, 0.70% 30.64, 0.71% Eo.ﬁl, 0.70% 50.65, 0.72%
0.18,0.00 0.17,0.00 0.18,0.00 0.16,0.00 0.17,0.00 0.15,0.00
Ds 0.8 0.76 0.81 0.76 0.81 0.76 0.81
éo.n, 0.79% §0.7s, 0.84% Eo 72, 0.80% Eo 78,0 84% Eo 72,0 79% go 79,0 85%
0.06,0.60 0.03,0.92 0.06,0.70 0.03,0.90 0.06,0.76 0.03,0.88
Di 0.8 0.77 0.79 0.79 0.80 0.80 0.81
(0.73,0.80) (0.75,0.83) (0.75,0.82) (0.75,0.84) (0.77,0.84) 50.76, 0.85)
£0.05,0.76} £0.03,0.96} £0.03,0.96} £0.03,0.96} £0.03,0.96} 0.03,0.94}
o, 0.005 0.0038 0.0043 0.0032 0.0040 0.0027 0.0038
(0.0031,0.0043)  (0.0035,0.0052)  (0.0023,0.0039)  (0.0030,0.0052)  (0.0020,0.0035)  (0.0025,0.0050)
{0.25,0.16} {0.18,0.60} {0.37,0.00} {0.23,0.58} {0.46,0.00} {0.28,0.62}
os 0.005 0.0052 0.0051 0.0052 0.0050 0.0051 0.0049
(0.0039,0.0065)  (0.0040,0.0061)  (0.0040, 0.0066)  (0.0039,0.0062)  (0.0041,0.0065)  (0.0037,0.0061)
{0.15,0.88} {0.13,0.92} {0.15,0.92} {0.13,0.96} {0.14,0.94} {0.14,0.92}
o; 0.002 0.0019 0.0018 0.0017 0.0015 0.0015 0.0013
(0.0017,0.0021)  (0.0016,0.0021)  (0.0014,0.0020)  (0.0013,0.0019)  (0.0012,0.0018)  (0.0011,0.0017)
{0.10,0.70} {0.14,0.62} {0.17,0.48} {0.24,0.20} {0.25,0.28} {0.34,0.12}
o 2.0 2.01 2.14 2.04 2.13 2.06 2.12
(1.84,2.16) (1.96,2.31) (1.88,2.19) (1.94,2.31) (1.89,2.21) 51.92, 2.28)
£0.06,0.98} £0.09,0.90} £0.06,0.98} £0.09,0.92} £0.07,0.98} 0.08,0.96}
Dy 0.5 0.31 0.39 0.35 0.42 0.41 0.46
0.18,0.48 0.24,0.60 0.21,0.54 0.27,0.62 0.26,0.59 0.30, 0.66
fo 42,0 64% fo 32,0 92% EO.BG, 0 80% fo 28,0 98% fo 27, 0.98% 50.24, 1.00%
b)) 1.79 2.01 1.90 2.08 1.95 2.13

Table 6: Average(5, 95) percentiles, andNRMSE, CR}. ¥ is the sum of th&WRMSE across the parameters.

ME Variances Table 6shows the parameter estimates & RRIMSEs for NL-PF with three dif-
ferent ME variances2%, 5% (baseline), and0%. Without model misspecification, lowering the
ME variances would increase the accuracy of the paramdieratss as long as the effective sam-
ple of particles is large enough. In our setup, the preseho@sspecification creates a potential
tradeoff. On the one hand, lower ME variances force the mimdalatch sharp swings in the data,
which could help identify the parameters. On the other hhigther ME variances give the model a
degree of freedom to account for important differences betwhe estimated model and the DGP.
We find higher ME variances increase the sum of Mi€MSE. In datasets with 30 quarter
ZLB events, it increases from01 to 2.13 when the ME variances increase fr@¥ to 10%. For
0. ando;, higher ME variances push the estimates lower, away frointifue values. Once again,
this result is likely driven by the filter incorrectly asarly movements in the data to ME rather
than the structural shocks. This loss in accuracy as the Mianges increase is partially offset
by the increase in the accuracy of most other parametersmé&ist ofg, with all datasets and
estimates o, with datasets where the ZLB binds for 30 quarters improvertbst. These results
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show that ME variances are important for accuracy. In sorses;dhey may compensate for model
misspecification. In our setup, however, larger ME variari@/e a net negative effect on accuracy.

4.2 NOTIONAL INTERESTRATE ESTIMATES We measure the accuracy of the notional rate by
calculating the averageMSE across periods when the ZLB binds. For pericahd estimation
methodh, the error is the difference between the filtered notiontd tmsed on the parameter
estimates for datasét i}, ,, and the true notional rat&;. TheRMSE for methodh is given by

n N t =1/ Py
RMSE; = /31 S0, 0 i — 7%

wheret is the first period the ZLB binds andis the duration of the ZLB event. There is no reason
to normalize th&k MSE since the units are the same across periods and we do not susB atates.
Estimates of the notional interest rate are of keen intdegblicymakers for two key rea-
sons. One, they summarize the severity of the recessiorhanmtbminal interest rate policymakers
would like to set in the absence of the ZLB, which help inforetidions about implementing un-
conventional monetary policy. Two, estimates of the nalaate help determine how long the
ZLB is expected to bind, which is necessary to issue forwalidance. The notional rate is also
the only latent endogenous state variable in the modelshadtidirectly linked to an observable.

1.75

NN NL-PF-2% [ NL-PF-5% [DTINL-PF-10% [ ]OB-TF-0%]

1.5+ 1.46 141 1
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Figure 1:RMSE of the notional interest rate across ZLB durations in thadReates are net annualized percentages.

Figure 1shows the accuracy of the notional rate for our baseline ogstiNL-PF5% and OB-
IF-0%. It also shows how different ME variances in the particlefiiffect accuracy. The Lin-KF
results are not presented because they are not very infleen&ince the linear model does not
distinguish between the notional and nominal rates anddh@mal rate is an observable, the error
in the linear model equals the absolute value of the noti@atalwhen the ZLB binds in the data.
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The error in the notional rate is significant. TRAISE almost always exceedsannualized
percentage point and in specific periods the differencedmtvestimated and true notional rate can
exceed 2 percentage points. However, NL#Pconsistently provides more accurate estimates
of the notional rate than OB-IB%. Depending on the ZLB duration, the difference between the
RMSE of the two methods ranges froml to 0.25 percentage points. Appendix E.5 shows the
RMSE is higher with OB-IF0% because the estimate of the notional rate is more likely ebloge
the true value. It also provides an example in which the difiees between the filtered notional
rate paths with OB-IF and NL-PF5% reachl percentage point in some periods. Therefore,
the average gain in accuracy from using NL-PF borders on #mgnitude of policy relevance, but
in some cases the differences between the two estimatesagamteaningful policy implications.

4.3 EXPECTEDZLB DURATION AND PROBABILITY In addition to estimates of the notional in-
terest rate, two commonly referenced statistics in theditee are the expected duration and prob-
ability of the ZLB constraint. These statistics determihe impact of a ZLB event in the model
and are frequently measured against survey datpire 2shows the accuracy of the two statistics.
The top panel compares the expected ZLB durations givendremeter estimates from the
small-scale model to the actual expected ZLB durations fiteerDGP given the true parameters.
The expected ZLB durations are computed as the averagesa6r680 simulations of a model ini-
tialized at the filtered states (or actual states for the D@#re the ZLB binds. The solid lines are
the mean expected ZLB durations in the small-scale model péioling across the different ZLB
states and datasets. The shaded areas af@,i®) percentiles of the durations. The estimated
expected ZLB duration equals the actual expected ZLB canrationg the dashed 45 degree line.
When the actual expected ZLB duration is relatively show, NIL-PF5% and OB-IF0% ex-
pected ZLB durations are close to the truth. As the actuatebgal duration lengthens, both es-
timates become less accurate. The NL&##95th percentile continues to encompass the actual
expected durations. However, once the actual value excaeedgiarters, there is 5% chance
or higher of under-estimating the actual expected duratitim OB-1F-0%. Furthermore, the OB-
IF-0% mean expected duration is typically at least one quartetteshthan the NL-PF% mean
estimate'? These results are likely driven by model misspecificatisrtha presence of capital and
sticky wages in the DGP makes the ZLB more persistent thameiestimated small-scale model.
The Lin-KF-0% estimated ZLB durations are always significantly shortaceithat method
does not permit a negative notional rate when filtering thia.d&'he only instance when Lin-
KF-0% produces an expected ZLB duration beyond one year is wheecthregomy is in a severe
downturn and the actual expected duration is extremely.|®hg Lin-KF-0% estimates are a lower
bound on the OB-IBY% estimates since the solutions are identical when the ZLB doebind.

2prior to instituting date-based forward guidance in 201tLeBChip consensus forecasts revealed that people
expected the ZLB to bind for three quarters or less. Afteftinerard guidance, the expectation rose to seven quarters.
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Figure 2: Estimated and actual ZLB statistics. The soliddimre mean estimates and the shaded areas capture the
(5,95) percentiles across the datasets. The dashed line shows thkeerstimated values would equal the actual values.

The bottom panel is constructed in a similar way as the toglpaxcept the horizontal and
vertical axes correspond to the actual and estimated pildppadf a ZLB event that lasts for at
least four quarters. The probability is calculated in alipgs where the ZLB does not bind in the
data. The results for Lin-KBY% are not shown because the probability of a four quarter ZLéhev
is always near zero. NL-P&% and OB-IF9% underestimate the true probability, but the mean
NL-PF-5% estimates are slightly closer to the actual probabilities the95th percentile almost
encompasses the truth. Changing the ME variances in thielpdiiter has no discernable effect
on the estimates. These results illustrate the precauyicaaings effects of the ZLB, which are
not captured by OB-IF¥%. However, they do not provide overwhelming support for NE-5%.

4.4 ReCESSIONRESPONSES To illustrate the economic implications of the differencesc-
curacy, we compare simulations of the small-scale mode@rgour parameter estimates to simu-
lations of the DGP given the true parameters. The simulatéoe initialized in steady state and
followed by four consecutivé.5 standard deviation positive risk premium shocks, whichegates
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Figure 3: Recession responses. The solid line is the truglafion, the dashed line is the mean estimated simulation,

and the shaded area contains (Bg95) percentiles across the datasets. The simulations aralirgiil in steady state
and followed by foun.5 standard deviation positive risk premium shocks. All valaee net annualized percentages.

a10 quarter ZLB event in the DGP.A risk premium shock is a proxy for a change in demand be-
cause it affects households’ consumption and saving @ecsiPositive shocks cause households
to postpone consumption, which reduces current outputtirowe focus on this particular shock
because it is the primary mechanism for generating ZLB evierthe DGP and estimated modél.
Figure 3shows the simulated paths of the output growth gap, inflatitey and notional interest
rate in annualized net percentages. The NL5PFsimulations are shown in the left column and

13The simulations are reflective of the Great Recession. TheruCongressional Budget Office estimate of the
output gap in 2009Q2 is'5.9%, roughly equivalent to the output (level) gap in the truewdation in the fourth period.
Y¥Appendix E.4 shows impulse responses to a productivity frand monetary policy shock in a severe recession.
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the OB-IF0% simulations are in the right column. The true simulationtef DGP (solid line) is
compared to the mean estimated simulation of the smalescatlel (dashed line). T8, 95) per-
centiles account for differences in the simulations actiesgparameter estimates for each dataset.
Model misspecification leads to significantly muted respsnelative to the true simulatidh.
None of the estimated simulations for NL-BE:- or OB-IF-0% can replicate the size of the neg-
ative output growth gap, decline in inflation, or policy reape at the beginning of the true simu-
lation. Both estimation methods also underestimate thatdur of the ZLB event. However, the
NL-PF-5% mean simulations of the three variables and the ZLB duraiencloser to the truth
than the OB-IF3% simulations. Unlike OccBin, the fully nonlinear solutioaptures the expec-
tational effects of going to the ZLB, which puts downwardgs@e on output and inflation and
improves accuracy. Although NL-P5% is closer to the truth than OB-16%, once again these
differences are fairly small and may not justify the sigrfidy longer estimation time.

4.5 FORECASTPERFORMANCE Anotherimportant aspect of any model is its ability to fastc
We examine the forecasting performance of each estimatigthad in the quarter immediately
preceding a severe recession that causes the ZLB to bindodiheforecasts are inaccurate since
severe recessions are rare. However, there are potemmdbyrtant differences between the fore-
cast distributions, which assign probabilities to the mnfpotential outcomes in a given period.
The tails of the distribution are particularly importanto fneasure the accuracy of the forecast
distribution of variablej, we compute the continuous rank probability scar&PS) given by

CR’PS%,k,t,T = fﬁ; [Fon et (o) e + fjiT[l — Fo et (o) P djigr,

wherem indicates whether the forecast distribution comes froni&® or an estimated modéi,
is the dataset,is the forecast datéy,, ;. : (j.+-) is the cumulative distribution function (CDF) of the
T-quarter ahead forecast, afpd. is the true realization. ThRERPS measures the accuracy of the
forecast distribution by penalizing probabilities asgidiio outcomes that are not realized. It also
has the same units as the forecasted variables, which aperentages, and reduces to the mean
absolute error if the forecast is deterministic. A small®&PS indicates a more accurate forec#st.
For each dataset,(@RPS is calculated for the small-scale model given the paranestimates
as well as the medium-scale model that generates the datgppFoximate the forecast distribu-
tion for a given model, the model is simulated for 8 quarteds)00 times, using random shocks.
The forecasts are initialized at the filtered state (or dcitae for the DGP) one quarter before
the ZLB binds in the data. The simulations are then used tooappate the CDF of the forecast
distribution 8-quarters ahead. Finally, t@® PS for a given model is averaged across the datasets.

5Appendix E.3 reproduces the responses without misspeaiiica confirm it is the source of the muted responses.
6Appendix D shows the CDF for a specific dataset to illustratateach term represents in & PS calculation.
Y7Similar results occur with a four quarter forecast horizaswell as with th&MSE of the point forecast.
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Figure 4: MearCRPS of 8-quarter ahead forecasts. Forecasts are made onerduefare the ZLB binds in the data.

Figure 4shows the mea@RPS across the datasets for the DGP and each estimation method.
The horizontal axis denotes the ZLB duration in the data. @uaodel misspecification, none of
the estimation methods perform as well as the DGP. The DGRthasast &.5 percentage point
advantage over the estimated models, regardless of theakiezl variable or ZLB duration in the
data. Interestingly, th€RPS is similar across the estimation methods. The differencesrest
pronounced for the nominal interest rate forecasts in dtgaghere the ZLB binds for 30 quarters.
The NL-PF5% CRPS is only 179% of the DGPCRPS, compared ta99% for OB-IF-0% and
211% for Lin-KF-0%. The NL-PF5% forecasts of the inflation rate are also consistently more
accurate than the other estimation methods. However, taabs the differences in accuracy are
small relative to the DGP. These findings are consistent aithprevious results. NL-PE% has
an advantage over OB-16%, but it is small and may not be worth the added computationstisc
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5 CONCLUSION

During the Great Recession, many central banks lowered ploéicy rate to its ZLB, creating a
kink in the policy rule and calling into question linear eséition methods. There are two promising
alternatives: estimate a fully nonlinear model that act®tor the expectational effects of going to
the ZLB or a piecewise linear model that is faster but igntinesexpectational effects. This paper
compares the accuracy of the two methods. We find the predgtf the nonlinear model are
typically more accurate than the piecewise linear modélitmidifferences are often small. There
are far larger gains in accuracy from estimating a riches haisspecified piecewise linear model.
Our results suggest that researchers are better off usaugwise linear models rather than
a simpler but properly solved nonlinear model when exangiine empirical implications of the
ZLB constraint. However, it is important to caution thatther research is needed to examine
whether our findings in the ZLB context are generalizabletb@osettings. It is also important to
emphasize that the nonlinear model is considerably mosatitr. While the piecewise linear and
nonlinear models can handle any combination of occasipialding constraints, only the non-
linear model can account for other nonlinear features esipéd in the literature (e.g., stochastic
volatility, asymmetric adjustment costs, non-Gaussiarcks, search frictions, time-varying pol-
icy rules, changes in steady states). Our results will sesv@n important starting point for future
research that explores these nonlinear features or makas@as in nonlinear estimation methods.
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