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ABSTRACT

Macroeconomic uncertainty regularly fluctuates in the data. Theory suggests complemen-

tarity between capital and labor inputs in production can generate time-varying endogenous

uncertainty because the concavity in the production function influences how output responds

to productivity shocks in different states of the economy. This paper examines whether comple-

mentarity is a quantitatively significant source of time-varying endogenous uncertainty by esti-

mating a nonlinear real business cycle model with a constant elasticity of substitution produc-

tion function and exogenous volatility shocks. When matching labor share and uncertainty mo-

ments, we find at most 16% of the volatility of uncertainty is endogenous. An estimated model

without exogenous volatility shocks can endogenously generate all of the empirical variation in

uncertainty, but only at the expense of significantly overstating the volatility of the labor share.
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1 INTRODUCTION

Macroeconomic uncertainty regularly fluctuates in the data. The literature typically accounts for
these fluctuations in business cycle models using shocks to the variance of an exogenous variable,
such as productivity, while holding its conditional mean fixed. That produces estimates for the re-
sponses of output to an exogenous increase in uncertainty, but it is silent about whether uncertainty
endogenously fluctuates over time in response to first-moment shocks and the state of the economy.

Straub and Ulbricht (2019) show that variance-preserving shifts in the productivity distribution
across firms cause endogenous fluctuations in the cross-sectional dispersion of output when capital
and labor are gross complements in production because each firm’s output becomes a concave func-
tion in productivity.1 We build on their work in two ways. First, we show that complementarity also
generates endogenous fluctuations in aggregate uncertainty—the expected forecast error volatility
of future aggregate output. Complementarity can endogenously generate fluctuations in aggregate
uncertainty because the concavity in the production function influences how output responds to first
moment shocks in different states of the economy. For example, a positive labor productivity shock
generates a larger change in output when the capital-to-labor ratio is high compared to when the
capital-labor ratio is low because complementarity increases the marginal product of labor when
capital is abundant. The differences in the responses imply that forecasts for output and hence the
level of uncertainty also depend on the initial state, creating time-varying endogenous uncertainty.

Second, we examine whether the endogenous variation in aggregate uncertainty is quantita-
tively significant. To conduct our analysis, we estimate a real business cycle model with a con-
stant elasticity of substitution (CES) production function, exogenous volatility shocks to produc-
tivity, and real frictions in the form of habit persistence in consumption and investment adjustment
costs. We estimate the nonlinear model using a global solution method and a simulated method
of moments that targets uncertainty, real activity, and labor share moments. The model generates
movements in aggregate uncertainty through exogenous volatility shocks and endogenous fluctua-
tions due to complementarity in the production function. Allowing for exogenous and endogenous
movements in uncertainty lets the data determine the relative importance of the two mechanisms.

We begin by looking at the predictions of the model without exogenous volatility shocks to
focus on the effects of complementarity. We find that the model without exogenous volatility can
successfully match either the uncertainty moments or the labor share moments, but not both. When
the labor share moments are excluded from the set of empirical targets, the model is able to en-
dogenously generate all of the empirical variation in aggregate uncertainty, confirming the theory
that gross complementarity can generate significant variation in aggregate uncertainty. However,
the estimated CES is only 0.14, well below almost all estimates in the literature, and the volatility

1Ilut et al. (2018) show concave hiring rules generate countercyclical volatility in response to productivity shocks.
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of the labor share is about six times higher than it is in the data. Alternatively, when we exclude the
uncertainty moments, the labor share moments pin down the estimated value of the CES, which in-
creases to 0.49. However, the higher estimate leads to far less concavity in the production function,
so the model is able to generate only about 20% of the volatility of aggregate uncertainty in the data.

We then turn to our baseline model with exogenous volatility shocks, which offers a competing
mechanism for the variation in uncertainty. The model jointly matches the volatility of uncer-
tainty and labor share dynamics, and the CES estimate is the same as when we match labor share
moments without exogenous volatility shocks. However, a forecast error variance decomposition
reveals that endogenous uncertainty explains at most 16% of the variation in aggregate uncertainty.
A lower CES would increase the strength of the endogenous uncertainty channel, but it would also
cause the model to overstate the empirical volatility of the labor share. Despite the theoretical ap-
peal of complementarity, these results show that it plays a limited role in generating the fluctuations
in macro uncertainty. However, the model underpredicts the cyclicality of uncertainty, which sug-
gests there is a potentially important role for other sources of time-varying endogenous uncertainty.

We also find the dynamics of real activity under a Cobb-Douglas production function are simi-
lar to those implied by our estimated CES production function. Under a Cobb-Douglas production
function with constant returns to scale, the labor share is constant, which motivates using a more
general CES production function. However, we find the empirical volatility of the labor share leads
to a CES estimate that is not small enough to generate meaningful differences in the dynamics im-
plied by the two production functions. This suggests a Cobb-Douglas production function provides
a reasonable approximation of business cycle dynamics, even when accounting for nonlinearities.

Related Literature A large literature has estimated the elasticity of substitution between capital
and labor. Klump et al. (2012) surveys reduced-form estimates of the CES. Across 17 studies, the
average CES is 0.58, well below the unit elasticity implied by Cobb-Douglas production. Oberfield
and Raval (2021), who account for substitution across plants, firms, and manufacturing industries,
estimate a CES for the U.S. manufacturing sector between 0.5 and 0.7. We obtain a similar CES es-
timate of 0.49 in our baseline model using a different framework and identification strategy. We pin
down the CES in a one-sector business cycle model using quarterly variation in the labor share and
macro uncertainty. When we do not target the labor share, the CES falls to 0.14. This estimate is
consistent with Cantore et al. (2015), who estimate a New Keynesian model with a CES production
function but without targeting labor share dynamics. While these estimates generate more endoge-
nous variation in uncertainty, they cause the model to over-predict the volatility of the labor share.

Several papers have also estimated a CES above unity (Eden and Gaggl, 2018; Hubmer, 2020;
Karabarbounis and Neiman, 2014). This work identifies the CES by focusing on long-run trends,
such as the decline in the labor share or the relative price of investment goods. Our estimation
procedure focus on business cycle dynamics and therefore matches the short-run properties of the
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de-trended labor share.2 However, the two sets of estimates are not necessarily inconsistent, as it is
eminently plausible that the long-run elasticity is higher than the short-run elasticity we estimate.

Several papers study alternative sources of endogenous uncertainty. One segment emphasizes
the role of a financial sector, where the severity and duration of financial crises are stochastic. Most
papers focus on crises that result from financial frictions, collateral constraints, or the zero lower
bound constraint on the nominal interest rate (Brunnermeier and Sannikov, 2014; He and Krishna-
murthy, 2019; Mendoza, 2010; Plante et al., 2018), while others incorporate the role of firm default
(Arellano et al., 2019; Gourio, 2014; Navarro, 2014). A separate segment of the literature examines
the implications of incomplete information. Some feature learning with aggregate shocks (Fajgel-
baum et al., 2017; Saijo, 2017; Van Nieuwerburgh and Veldkamp, 2006), while others focus on
firm-specific shocks (Ilut and Saijo, 2020; Straub and Ulbricht, 2015). In these models, adverse
shocks under asymmetric learning reduce economic activity and make it harder for agents to learn
about the economy, amplifying equilibrium dynamics. Finally, recent papers have shown that
search and matching frictions can generate uncertainty (Bernstein et al., 2020; Ilut et al., 2018).
Consistent with many of these mechanisms, uncertainty in our model occurs at business cycle
turning points. One major benefit of our mechanism is that it is easy to incorporate into any model.

There are also papers that study the effects of exogenous volatility shocks. For example, this
literature has examined volatility shocks to technology (Bloom, 2009; Leduc and Liu, 2016), fiscal
policy (Born and Pfeifer, 2014; Fernández-Villaverde et al., 2015), monetary policy (Mumtaz and
Zanetti, 2013), and the real interest rate (Fernández-Villaverde et al., 2011). We build on this lit-
erature by examining the role of exogenous volatility shocks in driving aggregate uncertainty. Our
model accounts for exogenous and endogenous sources of uncertainty, and our estimation disci-
plines the stochastic processes by matching the volatilities of both real activity and aggregate uncer-
tainty. This allows the data to decide which source is driving the empirical variation in uncertainty.

Our paper also makes two technical contributions to the literature. First, we estimate our model
using a global solution method, which is crucial to calculate aggregate uncertainty and account for
state-dependance. Cantore et al. (2015) estimate a similar model but use a linear solution method
and focus on issues besides uncertainty. Similarly, the exogenous uncertainty literature typically
applies third-order perturbation methods. Second, we are the first to discipline uncertainty dynam-
ics in a business cycle model by directly linking to uncertainty dynamics in the data. We rely on the
real uncertainty series in Ludvigson et al. (2020) over other popular measures of uncertainty (e.g.,
realized volatility, indexes based on keywords in print or online media, survey-based forecast dis-
persion) since it is based on the same statistic we use to measure uncertainty in our structural model.

The paper proceeds as follows. Section 2 explains the underlying nonlinearity in a simplified

2Business cycle models typically do not separate short- and long-run elasticities of substitution. A notable excep-
tion is Leon-Ledesma and Satchi (2019), who embed a technological choice problem into a real business cycle model.
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setting. Section 3 presents our quantitative model. Section 4 re-examines the source of the nonlin-
earity in our quantitative model. Section 5 presents our estimation results, and Section 6 concludes.

2 UNDERLYING MECHANISM

This section first defines our measure of uncertainty and then shows complementarity can generate
time-varying endogenous uncertainty even with independent inputs. The benefit of this example is
that it shows it is possible to incorporate our proposed mechanism into any equilibrium framework.

2.1 UNCERTAINTY DEFINITION Following Plante et al. (2018), uncertainty is defined as the
expected volatility of a variable in the model. The same definition is used in empirical work (e.g.,
Jurado et al. 2015; Ludvigson et al. 2020). It is possible to calculate uncertainty over any horizon,
but we focus on the 1-quarter ahead forecast error. For variable x, aggregate uncertainty is given by

Uxt,t+1 ≡
√
Et[(xt+1 − Et[xt+1])2], (1)

where Et is the mathematical expectation operator conditional on information available at time t.
A key aspect of this definition is that it removes the predictable component, Et[xt+1], from a 1-
period ahead forecast of x. While x can represent any variable in the model, the discussion in this
paper is centered on log output (ŷt) and log output growth (ŷgt = ŷt+1 − ŷt). The first useful result
is that the uncertainty surrounding these two endogenous variables are equal. This result occurs
because ŷt is known at time t and therefore cancels out when removing the predictable component.

2.2 ENVIRONMENT A common assumption is that output is produced according to a Cobb-
Douglas production function with constant returns to scale. In this case, log output, ŷt, is given by

ŷt = αx̂1,t + (1− α)x̂2,t,

where hats denote logs, x̂i,t, i ∈ {1, 2}, are random variables that evolve according to

x̂i,t = (1− ρi) log x̄i + ρix̂i,t−1 + νiεi,t, 0 ≤ ρi < 1, εi ∼ N(0, 1), (2)

and bars denote steady-states. Uncertainty about log output 1-period ahead is constant and given by

U ŷt,t+1 =

√
α2ν2

1 + (1− α)2 ν2
2 . (3)

This expression shows the conditional volatility of log output is a weighted average of the variance
of each shock, with weights equal to the squared share of each variable in the production function.

While this example is stylized, it illustrates the important role of the production function and
the assumptions underlying the random variables. There are four key assumptions behind the
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results: (1) Log-linearity of the production function; (2) Constant weights on the variances; (3)
Log-linearity of the stochastic processes; (4) Constant conditional variances of the shocks (εi).
Deviations from any of these assumptions would create time-varying uncertainty about log output.
Relaxing the last assumption by making the variance of an exogenous variable stochastic is the
most common way to introduce time-varying uncertainty. Since it does not depend on any equilib-
rium feature of the model, we refer to it as time-varying exogenous uncertainty. This paper focuses
on the effects of relaxing the first assumption, which creates time-varying endogenous uncertainty.

An alternative way to think about the importance of assumptions (1)-(4) is to note that they
imply the response of log output to an unexpected shock is not state-dependent. Mathematically,

∂ŷt/∂ε1,t = αν1 and ∂ŷt/∂ε2,t = (1− α)ν2.

The impact of a shock to log output is the same in every period and for any state of the economy.

2.3 UNCERTAINTY APPROXIMATIONS Taylor expansions are useful for approximating mo-
ments of a variable when the variable is a nonlinear function of other random variables. For
example, a second-order approximation of the variance of some generic function f(x) is given by

Var[f(x)] ≈ (f ′(E[x]))2ν2
x, (4)

where f ′(E[x]) is the first derivative of f(x) evaluated at the unconditional mean of x and ν2
x is

the unconditional variance of x. Extensions to the multivariate case are straightforward as long as
the random variables are uncorrelated. In that case, the variance is approximated by a weighted
average of the unconditional variances of the random variables, with the weights equal to the first
partial derivatives of the function evaluated at the unconditional means of the random variables.

Approximating ŷ around the conditional mean of x̂1 and x̂2 in the Cobb-Douglas case implies

Vart[ŷt+1] ≈ α2ν2
1 + (1− α2)ν2

2 .

This approximation is exact due to the log-linearity of the production function and its two inputs.
Taking a square root of the conditional variance produces our measure of uncertainty defined in (1).

Now consider a more general CES production function given by

ŷt = σ
σ−1

ln
(
α exp(σ−1

σ
x̂1,t) + (1− α) exp(σ−1

σ
x̂2,t)

)
,

where σ is the elasticity of substitution. The approximation for the conditional variance implies

Vart[ŷt+1] ≈ (f1(Etx̂1,t+1, Etx̂2,t+1))2ν2
1 + (f2(Etx̂1,t+1, Etx̂2,t+1))2ν2

2 ,

where fi(·) is the partial derivative of ŷ with respect to x̂i. As in the Cobb-Douglas case, the condi-
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tional variance for log output is a weighted average of the conditional variances of the two random
variables. However, the weights are now time-varying due to the state-dependent effects of the
shocks. This feature generates time-varying endogenous uncertainty under CES production.3
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Figure 1: Isoquants. Points A′ and B′ are shifted right by 0.05 units of output and α is set to 0.5.

2.4 ISOQUANTS Figure 1 plots isoquants to help visualize how complementarity generates state-
dependent responses of output and time-varying uncertainty. The inner solid line traces out combi-
nations of inputs that produce a given level of output. Points A and B are initial conditions for the
same level of output but with a high level of one input relative to the other. Points A′ and B′ are
both shifted to the right by 0.05 units of output, reflecting an increase in x̂1 with no change in x̂2.

In the left panel where the inputs are strong complements (σ = 0.1), the shift results in a large
increase in output from point A to A′, where x̂1 was initially low relative to x̂2 and the isoquants
are steep. This reflects the effect of complementarity, in that a high level of one input increases the
marginal product of the other. Alternatively, output is largely unchanged from point B to B′, as x̂1

is already elevated relative to x̂2 and the isoquants are relatively flat. The middle panel shows the
same exercise for Cobb-Douglas production. Since the isoquants are linear, increases in x̂1 raise
output by the same amount regardless of x̂2. In the right panel, where the inputs are substitutes (σ =

2.5), the isoquants are concave rather than convex, meaning an elevated level of one input relative
to the other increases its marginal product—the opposite of what happens under complementarity.

The partial derivative of ŷ with respect to x̂1 is 1/(1 + 1−α
α

exp(σ−1
σ

(x̂2− x̂1)), so the response
of output depends on the elasticity of substitution and the log difference in inputs (or the ratio of
the inputs when written in levels). The nonlinearity stems from the concavity in the production
function. Differences in the responses of output imply that forecasts for output and hence the level

3Appendix A provides more information about the approximations. See Benaroya et al. (2005) for further details.
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of output uncertainty also depends on the initial state of the economy. Under Cobb-Douglas pro-
duction, output uncertainty is time-invariant because the response of output is not state-dependent.4

2.5 EXOGENOUS VOLATILITY SHOCKS The discussion so far has focused on the implications
of relaxing the log-linearity of the production function (Assumption 1). As previously mentioned,
it is possible to generate time-varying exogenous uncertainty by relaxing the assumption of con-
stant conditional variances of the shocks (Assumption 4). To consider the impact, generalize (2) to

x̂i,t = (1− ρi) log x̄i + ρix̂i,t−1 + νi,tεi,t, 0 ≤ ρi < 1, εi ∼ N(0, 1),

where νi,t is uncorrelated with εi,t and evolves according to a stationary autoregressive process.
In this case, it is straightforward to show that uncertainty in the Cobb-Douglas case becomes

U ŷt,t+1 =
√
α2Et[ν2

1,t+1] + (1− α)2Et[ν2
2,t+1], (5)

which is time-varying. In the CES case our approximation for the conditional variance is given by

Vart[ŷt+1] ≈ (f1(Etx̂1,t+1, Etx̂2,t+1))2Et[ν
2
1,t+1] + (f2(Etx̂1,t+1, Etx̂2,t+1))2Et[ν

2
2,t+1].

The conditional volatility of output varies across time not only because the effects of the shocks are
state-dependent, but also because the conditional variances of νi fluctuate over time. Thus, it is pos-
sible to decompose the variation in aggregate uncertainty into endogenous and exogenous sources.

3 BUSINESS CYCLE MODEL

To conduct our quantitative analysis we use a real business cycle model with complementary inputs
in production, real frictions, and a common shock to the volatility of capital and labor productivity.

Firms The representative firm produces output according to a CES production function given by

yt =

{
y0

(
α(zk,tkt−1/k0)

σ−1
σ + (1− α)(ḡtzn,tnt/n0)

σ−1
σ

) σ
σ−1 , σ 6= 1,

y0(zk,tkt−1/k0)α(ḡtzn,tnt/n0)1−α, σ = 1,
(6)

where k is the capital stock, n is the labor supply, and ḡ is the average growth rate of labor-
augmenting productivity. zi, i ∈ {k, n}, is a stationary productivity shock that evolves according to

ẑi,t = ρziẑi,t−1 + νzi exp(ν̂t)εzi,t, 0 ≤ ρzi < 1, εzi ∼ N(0, 1), (7)

ν̂t = ρν ν̂t−1 + ννεν,t, 0 ≤ ρν < 1, εν ∼ N(0, 1). (8)

4When the inputs adjust proportionally, such as under Leontief production with flexible inputs, the nonlinearity and
state-dependence vanishes. However, as long as there is a non-unitary elasticity of substitution and the log difference in
inputs fluctuates over time, the curvature in the production function will generate time-varying endogenous uncertainty.
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Following the literature, we include normalizing constants, y0, n0 and k0, to ensure that α is the
cost-share of capital under both a Cobb-Douglas (σ = 1) and CES (σ 6= 1) production function.5

The firm chooses {nt, kt−1} to maximize yt−wtnt−rkt kt−1 subject to the production function,
where w is the wage rate and rk is the rental rate on capital. The optimality conditions are given by

rkt = α(y0zk,t/k0)(σ−1)/σ(yt/kt−1)1/σ, (9)

wt = (1− α)(y0ḡ
tzn,t/n0)(σ−1)/σ(yt/nt)

1/σ. (10)

The labor share, sn,t ≡ wtnt/yt, is time-varying when σ 6= 1, but always equals 1−α when σ = 1.

Households A representative household chooses {ct, nt, kt, xt}∞t=0 to maximize expected lifetime
utility, E0

∑∞
t=0 β

t[ (ct−hct−1)1−γ

1−γ − χn
1+η
t

1+η
], where c is consumption, x is investment, χ determines

the steady-state labor supply, γ is the coefficient of relative risk aversion, 1/η is the Frisch elasticity
of labor supply, and h is the degree of external habit persistence. These choices are constrained by

ct + xt = wtnt + rkt kt−1,

kt = (1− δ)kt−1 + xt(1− ϕx(xgapt − 1)2/2),

where xgapt = xt/(ḡxt−1) is investment growth, ϕx scales the size of the investment adjustment
cost, and δ is the depreciation rate on capial. The household’s optimality conditions are given by

wt = χnηt (ct − hct−1)γ, (11)

1 = qt[1− ϕx(xgapt − 1)(3xgapt − 1)/2] + ḡϕxEt[mt+1qt+1(xgapt+1)2(xgapt+1 − 1)], (12)

qt = Et[mt+1(rkt+1 + (1− δ)qt+1)], (13)

where q is Tobin’s q and mt+1 = β((ct − hct−1)/(ct+1 − hct))γ is the stochastic discount factor.

Equilibrium The resource constraint is given by ct + xt = yt. Due to the trend in labor produc-
tivity, we detrend the model by defining x̃t ≡ xt/ḡ

t. Appendix B provides the equilibrium system.
Competitive equilibrium consists of sequences of quantities {ỹt, k̃t, c̃t, nt, x̃t,mt+1, x

gap
t }∞t=0,

prices {rkt , w̃t, qt}∞t=0, and exogenous variables {zk,t, zn,t, νt}∞t=0 that satisfy the detrended equilib-
rium system, given initial conditions {c̃−1, k̃−1, x̃−1, zk,0, zn,0, ν0} and shocks {εzk,t, εzn,t, εν,t}∞t=1.

4 REINSPECTING THE MECHANISM

This section builds on the intuition from the production economy in Section 2. We begin by
solving our quantitative model under conditions that permit an analytical solution. We then report
generalized impulse responses and distributions of future output in different states of the economy.

5Leon-Ledesma et al. (2010) show that a normalized CES production function improves identification, in addition
to its theoretical benefits. See Klump et al. (2012) for more information about the effects of the normalizing constants.
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4.1 ANALYTICAL RESULTS To analytically solve our model, we assume capital fully depreci-
ates each period (δ = 1), turn off the real frictions (h = ϕx = 0), remove the capital productivity
and volatility shocks (νzk = νν = 0), and set γ = 1/σ. In this case, guessing that c̃t = θỹt implies

c̃t = (1− (αβ)σ(y0/(ḡk0))σ−1)ỹt, (14)

k̃t = (αβ)σ(y0/(ḡk0))σ−1ỹt, (15)

nt =

[
1−α
χ

(
1

1−(αβ)σ(y0/(ḡk0))σ−1

)1/σ (
y0zn,t
n0

)σ−1
σ

] σ
1+ησ

, (16)

which confirms the consumption-to-output ratio is constant. Labor depends on labor productivity.

Cobb-Douglas Case When σ = 1, uncertainty about 1-period ahead log output is given by

U ŷt,t+1 = (1− α)
√
Et[(ẑn,t+1 − Et[ẑn,t+1])2] = (1− α)νzn.

Only one term appears because α multiplies the capital stock, which is known at time t. If we
included both the capital- and labor-augmenting productivity shocks, uncertainty would equal√
αν2

zk + (1− α)ν2
zn, which is the same as we reported in (3) when both inputs were independent.

This example satisfies the assumptions in Section 2.2. The production function and shock pro-
cess are log-linear, the shock is homoskedastic, and the cost-shares are constant. Furthermore,
∂ŷt/∂εzn,t = (1 − α)νzn. Thus, a model with Cobb-Douglas production, log utility, and full de-
preciation cannot generate time-varying output uncertainty or state-dependent impulse responses.

CES Case When σ 6= 1, log output and log labor in period t+ 1 are given by

ŷt+1 = ŷ0 + σ
σ−1

ln
(
α exp(σ−1

σ
(k̂t − ĝ − k̂0)) + (1− α) exp(σ−1

σ
(ẑn,t+1 + n̂t+1 − n̂0))

)
, (17)

n̂t+1 = σ
1+ησ

(
κ̂n + σ−1

σ
ẑn,t+1

)
, (18)

where κ̂n collects the constant terms in the labor policy function. Combining the policy functions
provides an equation for log output that is solely a function of labor productivity. In contrast with
the Cobb-Douglas case, output is no longer log-linear. As a result, deriving an exact analytical
expression for log output uncertainty is no longer possible, so we turn to analytical approximations.

To apply the Taylor approximation in (4), first combine (17) and (18) and reorganize to obtain

ŷt+1 = ŷ0 + σ
σ−1

ln
(
α exp(σ−1

σ
(k̂t − ĝ − k̂0)) + (1− α) exp(κ̂y + (σ−1)(1+η)

1+ησ
ẑn,t+1)

)
,

where κ̂y collects the constant terms. The conditional variance of log output is approximated by

Vart[ŷt+1] ≈ [yẑ(k̂t, Etẑn,t+1)]2ν2
zn.
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Differentiation implies the weight, yẑ, increases with ẑn when σ > 1 and decreases when σ < 1, so
uncertainty is time-varying under CES production and constant in the Cobb-Douglas case (σ = 1).6

Importantly, when σ < 1, output becomes a concave function of capital and labor productivity and
the conditional variance depends on their relative levels as explained in the discussion of Figure 1.

Introducing exogenous volatility shocks would change the variance formulas in the same way
as Section 2.5, so the variances would become time-varying in the Cobb-Douglas and CES cases.

4.2 NUMERICAL RESULTS We now turn to numerical methods to permit solutions under more
general conditions. The literature often linearizes business cycle models. While this approach
works well for most applications, it prevents analysis of time-varying uncertainty. Therefore, we
solve the nonlinear model using the policy function iteration algorithm described in Richter et al.
(2014). The algorithm is based on the theoretical work on monotone operators in Coleman (1991).

To obtain initial conjectures for the nonlinear policy functions, we solve the log-linear analogue
of our nonlinear model with Sims’s (2002) gensys algorithm. We then minimize the Euler equation
errors on every node in the state space and compute the maximum distance between the updated
policy functions and the initial conjectures. Finally, we replace the initial conjectures with the
updated policy functions and iterate until the maximum distance is below the tolerance level. Once
the algorithm converges, we use the nonlinear solution and numerical integration to generate a pol-
icy function for log output uncertainty. See Appendix C for a detailed description of the algorithm.

Impulse Responses To generate time-varying endogenous uncertainty, the responses to first-
moment shocks must vary across states of the economy. Figure 2 shows the state-dependence by
plotting generalized impulse responses to a positive 2 standard deviation labor productivity shock
when σ ∈ {0.1, 1, 2.5}. These are the same values we used in Section 2.4 to illustrate the nonlin-
ear effects of complementarity. Our quantitative analysis, discussed in the next section, estimates
the CES. To simplify the state of the economy, we continue to exclude the real frictions and only
include a labor productivity shock, though these assumptions do not affect our qualitative results.7

Following Koop et al. (1996), the impulse response of variable xt+h over horizon h is given by

Gt(xt+h|εzn,t+1 = 2, zt) = Et[xt+h|εzn,t+1 = 2, zt]− Et[xt+h|zt],

where zt is a vector of initial states and 2 is the size of the labor productivity shock. The conditional
expectations are computed based on the mean path from 20,000 simulations of the model. Each

6Define f̂1,t = σ−1
σ (k̂t − ĝ − k̂0) and f̂2,t+1 = κ̂n +

(σ−1)(1+η)
1+ησ ẑn,t+1. Then the comparative statics are given by

ŷẑ(k̂t, ẑn,t+1) =
σ(1+η)
1+ησ

(1−α) exp(f̂2,t+1)

α exp(f̂1,t)+(1−α) exp(f̂2,t+1)
, ŷẑẑ(k̂t, ẑn,t+1) =

σ(σ−1)(1+η)2

(1+ησ)2
α(1−α) exp(f̂1,t) exp(f̂2,t+1)

(α exp(f̂1,t)+(1−α) exp(f̂2,t+1))2
,

where ŷẑ(k̂t, ẑn,t+1) > 0. Therefore, it is easy to see that the sign of ŷẑẑ(k̂t, ẑn,t+1) depends on the sign of σ − 1.
7The deep parameters are described in Section 5. For this exercise, we temporarily set ρzn = 0.95 and νzn = 0.02.
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Figure 2: Generalized impulse responses to a 2 standard deviation shock to labor productivity in different
states of the economy. To simplify the state, the model only includes labor productivity shocks and there
are no real frictions. The capital state is ±2% of steady state. The labor productivity state is ±4.5% of
steady state. These values correspond to the (16, 84) percentiles of the ergodic distribution when σ = 0.1.

line reflects the response from a different initial state. The low (high) capital state is 2% below
(above) steady state. The low (high) labor productivity state is 4.5% percent below (above) steady
state. These values correspond to the (16, 84) percentiles of the ergodic distribution when σ = 0.1.

There are several important takeaways from the impulse responses. First, a lower CES dampens
the response of output (ŷ) to a labor productivity shock regardless of the initial state. The response
of hours (n̂) declines with a lower CES and is negative when σ = 0.1. This is driven by the
complementarity in the production function. Since capital cannot immediately adjust in response
to the shock, higher complementarity (a lower σ) reduces the increase in the marginal product of
labor from a labor productivity shock and dampens the increase in labor demand. In the extreme
case of perfect complementarity (Leontief production), a positive labor productivity shock causes a
one-for-one decline in hours and no change in output, since the marginal product of labor is zero.8

Second, the impulse responses are state-dependent when there is a high degree of complemen-
tarity, as shown in the left panel where σ = 0.1. The responses of hours and output depend on the
initial effective capital-to-labor ratio, zk,tkt−1/(zn,tnt). When this ratio is low, as it is when kt−1 is

8Francis and Ramey (2005) show hours decline in response to a technology shock in a model with Leontief produc-
tion. Cantore et al. (2014) find the sign of the response depends on the type of productivity shock and the CES value.
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low and zn,t is high, hours decline more because complementarity reduces the marginal product of
labor in these states. In turn, effective labor and hence output increases less. When kt−1 is high and
zn,t is low, labor productivity shocks lead to a smaller decline in hours and larger increase in output.

Third, complementarity implies business cycle turning points driven by labor productivity
shocks exhibit the most extreme levels of uncertainty. When capital is high and a large nega-
tive labor productivity shock occurs at the onset of a recession, the response to the other shocks is
elevated, increasing uncertainty. When capital is low and a large positive productivity shock arrives
at the start of an expansion, the response to the other shocks is weak, and future outcomes relatively
certain. This generates a negative correlation between uncertainty and output growth in the model.

For conciseness, the responses to a capital productivity shock are shown in Appendix F. How-
ever, it is useful to note that the responses of hours and output strengthen with a lower CES because
a capital productivity shock has the opposite effect on the marginal product of labor. The state-
dependency also differs from a labor productivity shock. Initial periods with low kt−1 and zk,t have
the largest responses of output, while periods with high kt−1 and zk,t have the smallest responses.
This result is expected given the impact of the shock on the effective capital-to-labor ratio. Also, the
highest levels of uncertainty occur at low levels of output, rather than business cycle turning points.

Under Cobb-Douglas production, there is no state dependence, confirming the intuition from
the analytical results and Section 2. When σ = 2.5, the state dependence is in the opposite direction
but negligible even though we consider a CES well above one. Overall, the state dependence is rel-
atively weak even when σ is near zero and the economy is in the extreme states shown in Figure 2.
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Figure 3: Conditional distributions for log output one period in the future in different states of the economy.

Conditional Output Distributions Another intuitive way to visualize how the degree of com-
plementarity affects output uncertainty is to look at the conditional distributions for future log
output. To generate these distributions, we first conduct 20,000 1-period simulations of the model
at each state used to generate the impulse responses. We then use the simulated values from each
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specification to construct a kernel density estimator of the distribution of next period’s log output.
Figure 3 plots the conditional distribution for output in the same setting as the impulse re-

sponses. Consistent with earlier results, the distributions are invariant to the state of the economy
when σ ≥ 1. However, when σ = 0.1, the distributions differ depending upon the initial state. In
situations where the initial capital-to-labor ratio is low, the distributions are tighter around the con-
ditional mean of the distribution, whereas the distributions are wider in situations when the ratio
is initially high. This reflects that in initial states with a depressed level of capital relative to labor
productivity, changes in labor productivity next period will have a smaller impact on output. A
narrower (wider) distribution generates a lower (higher) level of uncertainty. Therefore, the larger
the differences in the conditional distributions, the greater the endogenous variation in uncertainty.

5 ESTIMATION RESULTS

This section presents our main results. We first outline our estimation strategy and then report the
parameter estimates and targeted moments under several specifications of our quantitative model.

Data The nonlinear model is estimated with quarterly data from 1964-2019. Five parameters are
set externally in line with our data sample and the literature. The discount factor, β = 0.9959,
equals the inverse of the average real interest rate, which corresponds to the ratio of the average
federal funds rate to the average GDP deflator inflation rate. The trend in the model, ḡ = 1.0039,
matches the average growth rate of per capita output. The capital depreciation rate, δ = 0.0247,
equals the average rate on private fixed assets and consumer durable goods. The steady-state labor
share of income s̄n = 1− α, since n0 = n̄ = 1/3 and y0 = ȳ = 1. We calibrate α = 0.3969 using
labor share data for the total economy from the Bureau of Labor Statistics. Finally, the Frisch
elasticity of labor supply, 1/η = 0.5, is set to the intensive margin estimate in Chetty et al. (2012).

The rest of the parameters are set to target twelve moments in the data: the standard deviations
and first-order autocorrelations of output, consumption, and investment growth, and the standard
deviations, first-order autocorrelations, and cyclicality of uncertainty and the labor share of income.
The uncertainty data is based on the real uncertainty series from Ludvigson et al. (2020), shown in
Figure 4. This series is a sub-index of the macro uncertainty series from Jurado et al. (2015) that
accounts for 73 real activity variables (e.g., measures of output, income, housing, consumption,
orders, and inventories). Most of their time series are transformed into growth rates and standard
normalized. Simulations of a factor augmented vector autoregression are used to obtain estimates
of uncertainty for each real variable and then averaged to generate the real uncertainty series.
The benefit of this series is that it is based on the same definition of uncertainty as this paper,
so it distinguishes between uncertainty and ex-post volatility. To make the units from our model
comparable to the real uncertainty series, we define SD(U ŷ) ≡ SD(U ŷt,t+1)/SD(ŷgt ), where ŷgt is
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Figure 4: Real uncertainty series from Ludvigson et al. (2020). Shaded regions denote NBER recessions.

the quarter-over-quarter log-difference in output. Consumption includes expenditures on services
and nondurables. Investment is composed of durable consumption and private fixed investment.
Appendix D provides detailed descriptions of all our data sources and how they were transformed.

Methodology The empirical targets are stored in Ψ̂D
T and estimated with a two-step Generalized

Method of Moments (GMM) estimator, where T = 224 is the sample size. Conditional on the
GMM estimates, the nonlinear model is estimated with Simulated Method of Moments (SMM).
For parameterization θ and shocks E , we solve the model and simulate itR = 1,000 times for T pe-
riods. The analogues of the targets are the median moments across the R simulations, Ψ̄M

R,T (θ, E).
The parameter estimates, θ̂, are obtained by minimizing the following loss function:

J(θ, E) = [Ψ̂D
T − Ψ̄M

R,T (θ, E)]′[Σ̂D
T (1 + 1/R)]−1[Ψ̂D

T − Ψ̄M
R,T (θ, E)],

where Σ̂D
T is the diagonal of the GMM estimate of the variance-covariance matrix. Monte Carlo

methods are used to calculate the standard errors on the parameters.9 We run our SMM algorithm
Ns = 100 times, each time conditional on a particular sequence of shocks Es but holding fixed the
empirical targets, Ψ̂D

T , and weighting matrix, Σ̂D
T , used in the loss function. Given the set of param-

eter estimates {θ̂s}Nss=1, we report the mean, θ̄ =
∑Ns

s=1 θ̂
s/Ns, and (5, 95) percentiles.10 While this

method is numerically intensive, there are two major benefits to obtaining standard errors by Monte
Carlo. First, it provides more reliable estimates of the standard errors than using the asymptotic
variance of the estimator, which is the more common method used in the literature. Second, it is
an effective way to determine whether the parameters are identified and check for multiple modes.

9Ruge-Murcia (2012) applies SMM to several nonlinear business cycle models and finds that asymptotic standard
errors tend to overstate the variability of the estimates. This underscores the importance of using Monte Carlo methods.

10The practice of re-estimating with different sequences of shocks follows the recommendation of Fabio Canova
(see http://apps.eui.eu/Personal/Canova/Teachingmaterial/Smm_eui2014.pdf, slide 16).
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No Exogenous Volatility Shocks Baseline

Labor Share Uncertainty
Moments Moments All Moments All Moments

Parameter Untargeted Untargeted Targeted Targeted

Volatility Shock AC ρν − − − 0.902
(0.891, 0.912)

Volatility Shock SD νν − − − 0.028
(0.026, 0.030)

Labor Productivity AC ρzn 0.954 0.750 0.953 0.765
(0.944, 0.964) (0.654, 0.820) (0.946, 0.959) (0.701, 0.809)

Labor Productivity SD νzn 0.025 0.036 0.027 0.036
(0.022, 0.028) (0.030, 0.048) (0.026, 0.028) (0.032, 0.044)

Capital Productivity AC ρzk 0.952 0.550 0.291 0.388
(0.913, 0.986) (0.312, 0.765) (0.251, 0.353) (0.250, 0.643)

Capital Productivity SD νzk 0.008 0.009 0.022 0.009
(0.007, 0.009) (0.008, 0.010) (0.020, 0.024) (0.008, 0.009)

Investment Adjustment Cost ϕx 2.36 6.80 5.10 6.76
(1.65, 3.25) (5.45, 9.73) (4.55, 5.73) (5.79, 8.65)

External Habit Persistence h 0.84 0.94 0.95 0.95
(0.78, 0.88) (0.93, 0.96) (0.95, 0.96) (0.94, 0.96)

Elasticity of Substitution σ 0.14 0.49 0.65 0.49
(0.11, 0.18) (0.47, 0.51) (0.63, 0.66) (0.48, 0.50)

Loss Function J 2.06 6.40 46.62 14.73
(1.70, 2.52) (6.27, 6.48) (45.52, 48.13) (14.37, 15.05)

Table 1: Average and (5, 95) percentiles of the parameter estimates and model fit.

Empirical Fit Table 1 shows the parameter estimates and Table 2 shows the model-implied mo-
ments under various specifications. We first report estimates from the model without exogenous
volatility shocks to concentrate on the effects of complementarity. The first column (“Labor Share
Moments Untargeted”) shows the results when we exclude the standard deviation, autocorrelation,
and cyclicality of the labor share from the set of targeted moments. In this case, the estimated
model is able to endogenously generate all of the empirical volatility of uncertainty (5.51 in the
model vs. 5.39 in the data), while almost perfectly matching all of the other empirical targets (J =

2.06). These results confirm the theory that complementarity can be a significant source of time-
varying endogenous uncertainty. However, achieving these results requires a very low CES, which
causes the model to overstate the volatility of the labor share (9.76 in the model vs. 1.55 in the data).

The second column (“Uncertainty Moments Untargeted”) shows the results when we exclude
the standard deviation, autocorrelation, and cyclicality of uncertainty from the set of targeted mo-
ments. These results illustrate that the labor share moments are crucial to identify the CES. The
estimated CES increases to 0.49 to match the volatility of the labor share in the data. While the CES
estimate is still well below the unitary elasticity of a Cobb-Douglas production function, the model
is able to generate only about 20% of the empirical volatility of uncertainty (1.03 in the model vs.
5.39 in the data). The fit of the model (J = 6.40) is also slightly worse than the first specification.

In the third column, we target all twelve moments in our model without exogenous volatility
shocks. The CES estimate increases to 0.65 and the model is able to match all of the targeted labor
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Data No Exogenous Volatility Shocks Baseline

Labor Share Uncertainty
Moments Moments All Moments All Moments

Moment Mean SE Untargeted Untargeted Targeted Targeted

SD(U ŷ) 5.39 0.56 5.51 1.03u 2.54 5.07
AC(U ŷ) 0.87 0.04 0.88 0.51u 0.86 0.86
Corr(ŷg,U ŷ) −0.43 0.09 −0.43 −0.79u −0.37 −0.19

SD(s̃n) 1.55 0.12 9.76u 1.56 1.58 1.57
AC(s̃n) 0.84 0.04 0.93u 0.84 0.82 0.84
Corr(ŷg, s̃n) −0.25 0.07 −0.28u −0.25 −0.19 −0.27

SD(ŷg) 0.80 0.07 0.85 0.92 0.96 0.91
SD(ĉg) 0.51 0.05 0.51 0.50 0.38 0.46
SD(x̂g) 2.03 0.20 1.84 1.73 2.14 1.78
AC(ŷg) 0.29 0.09 0.26 0.36 0.44 0.37
AC(ĉg) 0.39 0.07 0.38 0.39 0.42 0.39
AC(x̂g) 0.42 0.09 0.38 0.36 0.47 0.37

Table 2: Data and model-implied moments. The first section shows the uncertainty moments, the second
section shows the labor share moments, and the last section shows the real activity moments. A superscript
u denotes an untargeted moment. A tilde denotes a detrended variable. The trend in the data is based on a
Hamilton (2018) filter with an 8-quarter window. The model-implied trend is equal to the simulated mean.

share moments. In spite of the higher CES estimate, the model is able to endogenously generate
twice as much volatility in uncertainty as the second column (2.54, or about 40% of the data), but
that improvement comes at the expense of overstating several real activity moments, including the
volatility and autocorrelation of output growth. The fit of the model is much worse than other the
specifications (J = 46.62), though that is mostly because it understates the volatility of uncertainty.

The last column shows the estimates from our baseline model with exogenous volatility shocks.
The parameter estimates are similar to those in the second column. The model provides a good fit of
most of the twelve targeted moments (J = 14.73). In particular, exogenous volatility shocks allow
the model to simultaneously match the volatility of uncertainty and labor market dynamics. How-
ever, the cyclicality of uncertainty now falls below its empirical counterpart (−0.19 in the model
vs. −0.43 in the data), which suggests there is a role for other sources of endogenous uncertainty.

To summarize, complementarity by itself can generate empirically consistent endogenous vari-
ation in uncertainty, but it cannot do so while simultaneously matching labor share dynamics.
Moreover, if the model includes exogenous volatility shocks to allow for a horse-race between the
endogenous and exogenous sources of time-varying uncertainty, the estimated parameters are simi-
lar to estimates we obtain when the uncertainty moments are excluded from the set of empirical tar-
gets. This suggests endogenous uncertainty is playing a relatively minor role in matching the data.

Uncertainty Decomposition Exogenous volatility shocks introduce an exogenous source of time-
varying uncertainty, while complementarity endogenously generates fluctuations in uncertainty.
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To determine how much of the variance in aggregate uncertainty is driven by complementarity, we
compute a generalized forecast error variance decomposition (GFEVD). The method applied to lin-
ear models is easily generalized to a nonlinear model by replacing a linear impulse response func-
tion (IRF) with a generalized impulse response function (GIRF), which accounts for the initial state
and shock size. Recall from Section 4.2 that the GIRF of variable xt+h over horizon h is given by

Gi,t(xt+h|εi,t+1 = ξ, zt) = Et[xt+h|εi,t+1 = ξ, zt]− Et[xt+h|zt],

where ξ is the size of shock i ∈ {zn, zk, ν} and zt is a vector of initial states. Following Lanne and
Nyberg (2016), the GFEVD of variable xt+h into component i over time horizon h is then given by

λi,t(xt+h|zt) =

∫ ∞
−∞

∑h
j=1 (G(xt+j|εi,t+1 = ξ, zt))

2∑m
i=1

∑h
j=1 (G(xt+j|εi,t+1 = ξ, zt))

2
f(ξ)dξ,

where f(·) is the probability density function of εi. This method requires us to integrate across the
shock since the response of an endogenous variable is not necessarily a linear function of the shock
size in a nonlinear model. We use Gauss Hermite quadrature with 10 points to discretize the shock.

h = 1 h = 8 h = 16 Long-run

Exogenous Uncertainy 84.2 93.5 94.1 94.2
Endogenous Uncertainy 15.8 6.5 5.9 5.8

Table 3: Forecast error variance decomposition of aggregate uncertainty (U ŷ) over different horizons (h).

Table 3 shows the decomposition of aggregate uncertainty, SD(U ŷ), into its exogenous, λν ,
and endogenous, λzn + λzk, sources over various horizons (h). When h = 1, only 15.8% of the
variation in aggregate uncertainty is endogenous. That percentage steadily declines to 5.8% in the
long-run (h ≥ 20), because the exogenous volatility shocks are more persistent (ρν = 0.9) than
capital and labor productivity (ρzk = 0.39; ρzn = 0.77) and complementarity is not strong enough
to significantly affect the internal propagation in the model under our baseline parameter estimates.

Impulse Responses A useful way to see the role of complementarity is with the GIRFs that
underlie the variance decomposition in Table 3. Figure 5 plots the responses of output, aggregate
uncertainty, the effective capital-to-labor ratio, and the labor share in our baseline model to 1

standard deviation positive shocks to capital and labor productivity. We show the results using three
different values of the CES: (1) Our estimate when we exclude exogenous volatility shocks and the
labor share targets (σ = 0.14), (2) our baseline estimate (σ = 0.49), and (3) the value under Cobb-
Douglas production (σ = 1). All of the other parameters are set to the baseline estimates in Table 1.

For all three CES values, an increase in labor productivity leads to higher output by raising the
effective labor supply (zn,tnt). With labor relatively more abundant and the capital stock fixed on
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Figure 5: Generalized impulse responses to a 1 standard deviation positive shock. Output is shown in percent
deviations from steady state. Uncertainty is normalized by SD(ŷg) and shown as a percentage point (pp)
difference from steady state. Except for the CES, all of the parameters are set to their baseline estimates.

impact, the effective capital-to-labor ratio (zk,tkt−1/zn,tnt) falls. As demonstrated in Figure 2 and
Figure 3, starting from a lower effective capital-to-labor ratio makes output less sensitive to future
labor productivity shocks (lower uncertainty) but more sensitive to capital productivity shocks
(higher uncertainty). Under the baseline parameter estimates, the volatility of labor productivity
is much higher than the volatility of capital productivity. Therefore, uncertainty falls in response
to a labor productivity shock. The intuition works in reverse for the capital productivity shock. It
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raises the effective capital-to-labor ratio, making output more sensitive to future labor productivity
shocks and less sensitive to future capital productivity shocks and, on net, increasing uncertainty.11

The magnitudes of the impulse responses are affected by the degree of complementarity. With
a lower CES, higher labor productivity leads to a smaller increase in the marginal product of labor,
which translates into a smaller increase in output. A lower CES also leads to a smaller decline in
the effective capital-to-labor ratio. As inputs become more complementary, their relative values
become less volatile, which by itself would dampen the uncertainty response. However, the pro-
duction function also becomes more concave with a lower CES. Under our baseline calibration, the
latter effect dominates, so the magnitude of the uncertainty response strengthens as the CES de-
clines. Finally, a lower CES significantly increases the response of the labor share to either shock.

In spite of the nonlinearities from complementarity, the output and uncertainty responses under
our baseline CES estimate are similar to the responses under Cobb-Douglas production. Larger dif-
ferences only occur when the CES is near zero and the model significantly overstates the empirical
volatility of the labor share. This suggests a Cobb-Douglas production function provides a reason-
able approximation of business cycle dynamics, even when accounting for higher-order moments.

6 CONCLUSION

Macroeconomic uncertainty regularly fluctuates in the data. The business cycle literature typically
accounts for these fluctuations with exogenous volatility shocks, which introduce an exogenous
source of time-varying uncertainty. This paper focuses on endogenous movements in uncertainty
that arise due to the state-dependent effects of first-moment shocks. Theory suggests that com-
plementarity between capital and labor inputs in production is a potentially important source of
time-varying endogenous uncertainty because output becomes a concave function of productivity.
We examine the quantitative significance of this channel by estimating several variants of a non-
linear real business cycle model with a CES production function and exogenous volatility shocks.

We find an estimated model without exogenous volatility shocks can endogenously generate
all of the empirical variation in uncertainty, but only at the expense of significantly overstating
the volatility of the labor share. When we match labor share dynamics, our estimate of the CES
increases, decreasing the model’s ability to endogenously generate time-varying uncertainty. In
our baseline model that matches labor share and uncertainty dynamics, at most 16% of the varia-
tion in aggregate uncertainty is endogenous. Furthermore, the responses of output and uncertainty
to a productivity shock are similar to the responses under Cobb-Douglas production. Despite the
theoretical appeal of complementarity, these results indicate that its effects are quantitatively small.

There are three main avenues to build on our results. First, it would be interesting to add a com-
peting source of variation in the labor share (e.g., price markup). Currently, variation in the labor

11Appendix F compares the responses to a capital and labor productivity shock under different shock sizes and signs.
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share and endogenous uncertainty are both driven by the CES. An additional source of variation
in the labor share would decouple these movements. Second, one could examine the quantitative
significance of other sources of endogenous uncertainty. Business cycle models that endogenously
generate a large share of the empirical fluctuations in aggregate uncertainty would likely help
the model match other higher-order moments due to the state-dependent effects of first-moment
shocks. Three, one could develop richer models that are able to simultaneously explain the empir-
ical volatility of macroeconomic and financial uncertainty. Any of these avenues would advance
not only the uncertainty literature, but also the quantitative performance of business cycle models.
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A UNCERTAINTY APPROXIMATIONS

Suppose y = g(x) is a function of a random variable x with mean x̄, unconditional variance ν2
x,u,

and conditional (one-step ahead) variance ν2
x,c. A second-order Taylor expansion around x̄ implies

y ≈ g(x̄) + g′(x̄)(x− x̄) + g′′(x̄)(x− x̄)2/2,

so the unconditional expectation is given by

E[y] ≈ g(x̄) + g′′(x̄)ν2
x,u/2.

By definition Var[y] = E[(y − ȳ)2] = E[y2]− (E[y])2. Therefore, using the same approximation

Var[y] ≈ [g(x̄)]2 + ([g′(x̄)]2 + g(x̄)g′′(x̄))ν2
x,u − (g(x̄) + g′′(x̄)ν2

x,u/2)2.
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Expanding the approximation and dropping the term involving ν4
x,u implies Var[y] ≈ [g′(x̄)]2ν2

x,u.
An approximation of the time-t conditional variance of yt+1, Vart[yt+1], follows the same

derivation, except it is approximated around the conditional mean of xt+1, Et[xt+1]. Therefore,
Vart[yt+1] ≈ [g′(Et[xt+1])]2ν2

x,c. Now suppose x follows an AR(1) process with standard-normal
shock εx where the volatility of the shock, νx, is an independent stochastic process. The condi-
tional variance of x is now stochastic and given by Et[(xt+1 − Et[xt+1])2] = Et[(νx,t+1εx,t+1)2] =

Et[ν
2
x,t+1], because εx and νx are independent. Therefore, Vart[yt+1] ≈ [g′(Et[xt+1])]2Et[ν

2
x,t+1].

B DETRENDED EQUILIBRIUM SYSTEM

Our detrended baseline model includes the exogenous processes in (7)-(8) and

rkt = α
(
y0zk,t/k0

)σ−1
σ
(
ḡỹt/k̃t−1

) 1
σ ,

ỹt = y0

[
α
(
zk,tk̃t−1/(ḡk0)

)σ−1
σ

+ (1− α)
(
zn,tnt/n0

)σ−1
σ

] σ
σ−1

,

w̃t = (1− α) (y0zn,t/n0)
σ−1
σ (ỹt/nt)

1
σ ,

w̃t = χnηt λ̃t,

λ̃t = c̃t − (h/ḡ)c̃t−1,

c̃t + x̃t = ỹt,

k̃t = (1− δ)k̃t−1/ḡ + x̃t(1− ϕx(xgapt − 1)2/2),

1 = qt[1− ϕx(xgapt − 1)(3xgt − 1)/2] + βϕxEt[(λ̃t/λ̃t+1)qt+1(xgapt+1)2(xgapt+1 − 1)],

qt = (β/ḡ)Et[(λ̃t/λ̃t+1)(rkt+1 + (1− δ)qt+1)],

xgapt = x̃t/x̃t−1.

C NONLINEAR SOLUTION METHOD

We begin by compactly writing the detrended nonlinear equilibrium system as

E[f(st+1, st, εt+1)|zt, ϑ] = 0,

where f is a vector-valued function, st are the variables, εt = [εzn,t, εzk,t, νt] are the shocks,
zt ≡ [k̃t−1, c̃t−1, x̃t−1, zn,t, zk,t, νt] are the initial state variables, and ϑ are the parameters.

There are many ways to discretize the exogenous volatility shock, ν. We use the Markov chain
in Rouwenhorst (1995), which Kopecky and Suen (2010) show outperforms other methods for
approximating autoregressive processes. The bounds on k̃t−1, c̃t−1, zn,t, and zk,t, are set to ±10%

of their deterministic steady state values, while x̃t−1 is set to±25% of its deterministic steady state.
These values were chosen so the grids contain at least 99% of the simulated values for each state.
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We discretize the endogenous state variables (c̃t−1, k̃t−1, and x̃t−1) into 9 evenly-spaced points
and the exogenous variables into 7 evenly-spaced points. There are D = 250,047 nodes in the
state space, and the realization of zt on node d is denoted zt(d). The Rouwenhorst method provides
integration nodes νt+1(m) that are the same as the state variable. However, the processes for zn and
zk do not have a standard autoregressive form because of the exogenous volatility shocks. Thus,
the first moment shocks, [εzn,t, εzk,t], are discretized separately from the volatility process. The
policy functions are interpolated at realizations of zn,t+1(m) and zk,t+1(m) that can occur between
nodes in the state space. We use the same number of interpolation nodes as the state variables,
(7, 7, 7), so M = 343. The Rouwenhorst method provides weights, φ(m), for m ∈ {1, . . . ,M}.

The vector of policy functions is denoted pf t ≡ [nt(zt), qt(zt)] and the realization on node
d is denoted pf t(d). Our choice of policy functions, while not unique, simplifies solving for the
variables in the nonlinear system of equations given zt. The following steps outline our algorithm:

1. Use Sims’s (2002) gensys algorithm to solve the log-linear model. Then map the solution
for the policy functions to the discretized state space. This provides an initial conjecture.

2. On iteration j ∈ {1, 2, . . .} and each node d ∈ {1, . . . , D}, use Chris Sims’s csolve to find
pf t(d) to satisfy E[f(·)|zt(d), ϑ] ≈ 0. Guess pf t(d) = pf j−1(d). Then apply the following:

(a) Solve for all variables dated at time t, given pf t(d) and zt(d).

(b) Linearly interpolate the policy functions, pf j−1, at the updated state variables, zt+1(m),
to obtain pf t+1(m) on every integration node, m ∈ {1, . . . ,M}.

(c) Given {pf t+1(m)}Mm=1, solve for the other elements of st+1(m) and compute

E[f(st+1, st(d), εt+1)|zt(d), ϑ] ≈
∑M

m=1 φ(m)f(st+1(m), st(d), εt+1(m)).

When the nonlinear solver converges, set pf j(d) = pf t(d).

3. Repeat Step 2 until maxdistj < 10−6, where maxdistj ≡ max{|pf j − pf j−1|}. When that
criterion is satisfied, the algorithm has converged to an approximate nonlinear solution.

D DATA SOURCES

We use the following quarterly time-series from 1964-2019 provided by Haver Analytics:

1. Civilian Noninstitutional Population: 16 Years and Over,
Not Seasonally Adjusted, Thousands (LN16N@USECON)

2. Gross Domestic Product: Implicit Price Deflator,
Seasonally Adjusted, 2012=100 (DGDP@USNA)
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3. Personal Consumption Expenditures: Nondurable Goods,
Seasonally Adjusted, Billions of Dollars (CN@USECON)

4. Personal Consumption Expenditures: Services,
Seasonally Adjusted, Billions of Dollars (CS@USECON)

5. Personal Consumption Expenditures: Durable Goods,
Seasonally Adjusted, Billions of Dollars (CD@USECON)

6. Private Fixed Investment, Seasonally Adjusted, Billions of Dollars (F@USECON)

7. Gross Domestic Product, Seasonally Adjusted, Billions of Dollars, (GDP@USECON)

8. Labor Share, Total Economy, All Employed Persons (LXEBL@USECON)

9. Net Stock: Private Fixed Assets, Billions of Dollars (EPT@CAPSTOCK)

10. Net Stock: Consumer Durable Goods, Billions of Dollars (EDT@CAPSTOCK)

11. Depreciation: Private Fixed Assets, Billions of Dollars (KPT@CAPSTOCK)

12. Depreciation: Consumer Durable Goods, Billions of Dollars (KDT@CAPSTOCK)

13. Effective Federal Funds Rate, Percent per Annum (FFED@USECON)

We also use the Real Uncertainty Index developed in Ludvigson et al. (2020), which is regularly
updated on Sydney Ludvigson’s personal website. We use a quarterly average of monthly values
based on a 1-quarter forecast horizon (h = 3). The data was retrieved on September 7, 2020.

We applied the following transformations to the above data sources:

1. Per Capita Real Output Growth:

∆ŷt = 100
(

log
(

GDPt
DGDPt+LN16Nt

)
− log

(
GDPt−1

DGDPt−1+LN16Nt−1

))
.

2. Per Capita Real Consumption Growth:

∆ĉt = 100
(

log
(

CNt+CSt
DGDPt+LN16Nt

)
− log

(
CNt−1+CSt−1

DGDPt−1+LN16Nt−1

))
.

3. Per Capita Real Investment Growth:

∆x̂t = 100
(

log
(

Ft+CDt
DGDPt+LN16Nt

)
− log

(
Ft−1+CDt−1

DGDPt−1+LN16Nt−1

))
.

4. Subjective Discount Factor:

β = 1
T

∑T
t=1(DGDPt/DGDPt−1)/(1 + FFED/100)1/4.
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5. Capital Depreciation Rate:

δ = (1 + 1
T

∑T
t=1(KPTt +KDTt)/(EPTt−1 + EDTt−1))1/12 − 1.

E ESTIMATION METHOD

The estimation procedure has two stages. The first stage estimates moments in the data using a 2-
step Generalized Method of Moments (GMM) estimator with a Newey and West (1987) weighting
matrix with 5 lags. The second stage is a Simulated Method of Moments (SMM) procedure that
searches for a parameter vector that minimizes the distance between the GMM estimates in the
data and short-sample predictions of the model, weighted by the diagonal of the GMM estimate of
the variance-covariance matrix. The second stage is repeated for many different draws of shocks
to obtain standard errors for the parameter estimates. The following steps outline the algorithm:

1. Use GMM to estimate the moments, Ψ̂D
T , and the diagonal of the covariance matrix, Σ̂D

T .

2. Use SMM to estimate the detrended linear model. Given a random seed, h, draw a B + T

period sequence for each shock in the model, where B is a 1,000 period burn-in and T is the
sample size of the quarterly time series. Denote the shock matrix by Es = [εszk, ε

s
zn, ε

s
ν ]
B+T
t=1 ).

For shock sequence s ∈ {1, . . . , Ns}, run the following steps:

(a) Specify a guess, θ̂0, for the Np estimated parameters and the covariance matrix, Σs,0
P .

For all i ∈ {1, . . . , Nm}, apply the following steps:

i. Draw θ̂i from a multivariate normal distribution centered at some mean parameter
vector, θ̄, with a diagonal covariance matrix, Σ0.

ii. Solve the linear model with Sims’s (2002) gensys algorithm given θ̂i. Repeat the
previous step if the solution does not exist or is not unique.

iii. Given Es(r), simulate the quarterly model R times for B + T periods. We draw
initial states from the ergodic distribution by burning off the first B periods. For
each repetition r, calculate the moments based on T quarters, ΨM

T (θ̂i, Es(r)).

iv. Calculate the median moments across the R simulations,

Ψ̄M
R,T (θ̂i, Es) = median{ΨM

T (θ̂i, Es(r))}Rr=1,

and evaluate the loss function:,

Jsi = [Ψ̂D
T − Ψ̄M

R,T (θ̂i, Es)]′[Σ̂D
T (1 + 1/R)]−1[Ψ̂D

T − Ψ̄M
R,T (θ̂i, Es)].

(b) Find the parameter draw θ̂0 that corresponds to min{Jsi }
Nd
i=1, and calculate Σs,0

P .
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i. Find theNbest draws with the lowest Jsi . Stack the remaining draws in aNbest×Np

matrix, Θ̂s, and define Θ̃s = Θ̂s − 1Nbest×1

∑Nd
i=Nbest

θ̂si /Nbest.
ii. Calculate ΣP,0 = (Θ̃s)′Θ̃s/Nbest.

(c) Minimize J with simulated annealing. For i ∈ {0, . . . , Nd}, repeat the following steps:

i. Draw a candidate vector of parameters, θ̂candi , where

θ̂candi ∼

θ̂0 for i = 0,

N(θ̂i−1, c0Σs,0
P ) for i > 0.

We set c0 to target an average acceptance rate of 50% across seeds.

ii. Under Step 2a, repeats Steps ii-iv.

iii. Accept or reject the candidate draw according to

(θ̂si , J
s
i ) =


(θ̂candi , Js,candi ) if i = 0,

(θ̂candi , Js,candi ) if min(1, exp(Jsi−1 − J
s,cand
i )/c1) > û,

(θ̂i−1, J
s
i−1) otherwise,

where c1 is the temperature and û is a draw from a uniform distribution.

(d) Find the parameter draw θ̂smin that corresponds to min{Jsi }
Nd
i=1, and update Σs

P .

i. Discard the first Nd/2 draws. Stack the remaining draws in a Nd/2 × Np matrix,
Θ̂s, and define Θ̃s = Θ̂s − 1Nd/2×1

∑Nd
i=Nd/2

θ̂si /(Nd/2).
ii. Calculate Σs,up

P = (Θ̃s)′Θ̃s/(Nd/2).

(e) Repeat the previous step NSMM times, initializing at draw θ̂0 = θ̂smin and covariance
matrix ΣP = Σs,up

P . Gradually decrease the temperature. Of all the draws, find the
lowest J value, denoted Jsguess, and the corresponding draws, θsguess.

(f) Minimize the same loss function with MATLAB’s fminsearch starting at θsguess.
The minimum is θ̂smin with a loss function value of Jsmin. Repeat, each time updating
the guess, until Jsguess − Jsmin < 0.001. The parameter estimates correspond to Jsmin.

The set of SMM parameter estimates {θ̂s}Nss=1 approximate the joint sampling distribution of
the parameters. We report the mean, θ̄ =

∑Ns
s=1 θ̂

s/Ns, and (5, 95) percentiles. The reported
moments are based on the mean parameter estimates, Ψ̄M

T = Ψ̄M
R,T (θ̄, E).

We set Ns = 100, R = 1,000, NSMM = 3, and NJ = 1. Nm, Nd, Np, and c1 are all model-
specific. The nonlinear solution and estimation algorithms were both programmed in Fortran 95
and executed with Open MPI on the BigTex supercomputer at the Federal Reserve Bank of Dallas.
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F ADDITIONAL RESULTS

0 8 16 24 32 40
0

0.5

1

1.5

2

2.5

3

0 8 16 24 32 40
0

0.5

1

1.5

2

2.5

3

0 8 16 24 32 40
0

0.5

1

1.5

2

2.5

3

0 8 16 24 32 40
-0.5

0

0.5

1

1.5

2

2.5

0 8 16 24 32 40
-0.5

0

0.5

1

1.5

2

2.5

0 8 16 24 32 40
-0.5

0

0.5

1

1.5

2

2.5

Figure 6: Generalized impulse responses to a 2 standard deviation shock to capital productivity in different
states of the economy. To simplify the state, the model only includes capital productivity shocks and there
are no real frictions. The capital state is ±2% of steady state. The capital productivity state is ±4.5% of
steady state. These values correspond to the (16, 84) percentiles of the ergodic distribution when σ = 0.1.

Figure 6 shows impulse responses to a capital productivity shock. As in Figure 2, the responses
are based on a model without real frictions to highlight the state-dependent effects of the shocks
under different degrees of complementarity. In this case, a lower CES strengthens the responses
of output and hours because it increases the marginal product of labor. Once again, meaningful
state-dependency only occurs with a low CES. The strength of the responses depends on the initial
effective capital-to-labor ratio (zk,tkt−1/(zn,tnt)). Periods with low zk,t and kt−1 have the largest
responses of output and hours, while periods with high zk,t and kt−1 have the smallest responses.

Figure 7 shows impulse responses to a labor (top panel) and capital (bottom panel) productivity
shock in our baseline model with real frictions and exogenous volatility shocks. The responses are
the same as those shown in Figure 5, except we compare different shock sizes and signs to assess
the strength of the nonlinearities and asymmetries in the model. Under our baseline parameter esti-
mates, there is very little asymmetry in the model, as the responses to a positive shock are very sim-
ilar to the responses to a negative shock. The uncertainty response to a 4 standard deviation labor
productivity shock is slightly less than double the response to a 2 standard deviation shock, indicat-
ing that there is some nonlinearity in uncertainty, but the output responses essentially scale linearly.

29



ATKINSON, PLANTE, RICHTER & THROCKMORTON: COMPLEMENTARITY AND UNCERTAINTY

0 8 16 24 32 40
0

1

2

3

4

0 8 16 24 32 40
0

0.5

1

1.5

2

0 8 16 24 32 40
-4

-2

0

2

0 8 16 24 32 40
-2

-1

0

1

(a) Responses to a labor productivity shock (εzn)

0 8 16 24 32 40
0

0.2

0.4

0.6

0 8 16 24 32 40
0

0.1

0.2

0.3

0 8 16 24 32 40
-0.2

0

0.2

0.4

0 8 16 24 32 40
-0.1

0

0.1

0.2

(b) Responses to a capital productivity shock (εzk)

Figure 7: Generalized impulse responses to a shock with various sizes and signs. Output is shown in percent
deviations from steady state. Uncertainty is normalized by SD(ŷg) and shown as a percentage point (pp)
difference from steady state. All of the parameters, including the CES, are set to their baseline estimates.
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